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ABSTRACT

Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the
satellite estimates. The rainfall estimate for a given map grid box is subject to both remote sensing error and,
especially in the case of low-orbiting satellites, sampling error due to the limited number of observations of the
grid box provided by the satellite. A simple model of rain behavior predicts that rms random error in grid-box
averages should depend in a simple way on the local average rain rate, and the predicted behavior has been
seen in simulations using surface rain gauge and radar data. This relationship is examined using Special Sensor
Microwave Imager (SSM/I) satellite data obtained over the western equatorial Pacific during the Tropical Ocean
and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. Rms error inferred directly from
SSM/I rainfall estimates is found to be larger than was predicted from surface data and to depend less on local
rain rate than was predicted. Preliminary examination of Tropical Rainfall Measuring Mission (TRMM) micro-
wave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite
rainfall estimates is suggested, based on quantities that can be computed directly from the satellite data.

1. Introduction

Satellite data are now regularly used to produce grid-
ded maps of rainfall averaged over time intervals rang-
ing from hours to many months. It has not been easy,
however, to provide accompanying quantitative esti-
mates of the accuracies of the grid-box averages. This
is in part because remote sensing techniques do not yet
provide sufficient information to allow unambiguous
conversion of measurements into rain-rate values for the
observed area, and the distribution of errors introduced
in the conversion depends on the observed situation in
ways that are not always known. The problem is ex-
acerbated by the highly intermittent character of rain,
which makes averages of rain data noisy and comparison
of remote sensing results with measurements made on
the ground difficult.

The Tropical Rainfall Measuring Mission (TRMM)
satellite was launched in 1997. Descriptions of TRMM
are given by Simpson et al. (1988, 1996) and Kum-
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merow et al. (1998). One of the primary goals of the
mission is to provide rain data that are sufficiently ac-
curate that TRMM satellite products can serve as a kind
of transfer standard to calibrate rain estimates from other
satellite systems and thereby to improve the overall ac-
curacy of global rain maps. To help to reach this goal,
the satellite carries several instruments on board, in-
cluding a precipitation radar and a passive microwave
sensor, the latter having higher resolution than most
satellite-borne microwave instruments.

An important component of the effort toward reach-
ing this goal is developing quantitative estimates of the
accuracy of the gridded products of TRMM. A number
of different approaches to this are being tried, including
development of models for the error intrinsic to the
remote-sensing methods themselves; comparison of sat-
ellite products to ground-based measurements from rain
gauge arrays, radar sites, and aircraft measurements dur-
ing field campaigns; and comparison with other satellite
observations.

Although much can be learned about sources of error
in the TRMM rain estimates from examining individual
overlapping coincident snapshots of rain events taken
by various TRMM instruments and by other satellites
and ground-based observation systems, much can also
be learned from comparisons among averages of sat-
ellite data and ground-based data. As long as the av-
erages of the satellite estimates and ground-based or
other-satellite estimates are taken from time intervals
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and spatial locations that are believed to have similar
statistics, such averages allow enormously more data to
be used in the comparisons than can be assembled from
coincident observations. Comparisons of averages of
data reveal biases in rain estimates. Such biases may be
small when compared with discrepancies found in point-
by-point comparisons of coincident observations, yet
knowledge of these biases is important when averages
of TRMM data are used as a transfer standard or for
climatological studies, because the contributions of the
random discrepancies to averages of the data are reduced
by the averaging, but the biases (by definition) are un-
diminished.

One of the most common methods of comparing sat-
ellite estimates of rainfall with ground-based observa-
tions and with other satellite estimates is to test the
agreement of averages over a spatial domain, such as a
grid box on a map, averaged over a sufficiently long
time period that the averages are stable enough for the
comparison to be informative. Even if the remote sens-
ing techniques are perfectly accurate, such averages will
contain sampling errors, because the systems are not
measuring rainfall everywhere in the area at every mo-
ment. Rain gauges, for example, measure more or less
continuously in time but cover very little of the area,
whereas radar views irregularly shaped volumes of the
atmosphere at frequent but noncontinuous intervals of
time, and satellite observations are still more widely
spaced in time. Although averages from two different
systems may disagree because of inherent errors in the
measurement methods, they will almost certainly dis-
agree because they contain different sampling errors.

The bulk of this paper is devoted to developing a
quantitative description of sampling-related error for
satellite systems like TRMM and the Defense Meteo-
rological Satellite Program’s (DMSP) Special Sensor
Microwave Imagers (SSM/I). Suppose a satellite sys-
tem—TRMM, perhaps—gives an estimate R̂ for the true
average rain rate R0 in a grid box over some time in-
terval on the order of a month or so. The satellite system
makes an (unknown) error

« 5 R̂ 2 R0. (1)

A portion of the difference « may be due to possible
algorithmic and instrumental errors in estimating rain
rates when rain is observed, referred to here as retrieval
error. The retrieval error may vary with location and
time of observation. In addition, depending on the al-
titude of the satellite orbit and the instrument charac-
teristics, a given area on the earth may be viewed by
the satellite only a few times per day and even then
sometimes only partially. The quantity « may therefore
include a considerable amount of sampling error due to
this intermittent and occasionally incomplete coverage
of the grid box by the swath of the remote sensing
instrument.

Let us decompose « in (1) into a portion due solely
to the problems of remote sensing and a portion attrib-

utable to the sampling properties of the satellite system.
Imagine that the grid-box area is viewed by instruments
that are exactly like the ones on the satellite but are
somehow stationed above the area so that they are able
to provide continuous coverage of the area from the
same height as the satellite. Such imaginary instruments
would provide an average of the rain occurring in the
area during the month as ‘‘seen through the eyes of the
satellite,’’ that is, with all the errors inherent in remote
sensing but without the sampling error of the orbiting
satellite instruments. Let us denote by R* this average
based on hypothetical, continuous observation of the
entire area with the remote sensing system. Using this
hypothetical quantity, we can rewrite « as

« 5 «s 1 «*, (2)

with

ˆ« 5 R 2 R*, and (3)s

«* 5 R* 2 R . (4)0

The first term on the right-hand side of (2), «s, is the
sampling error in the average of the near-instantaneous
estimates made when the satellite flies over the grid box,
relative to the average that would have been obtained
if the entire grid box had been under continuous ob-
servation by the remote sensing system. The second
term, «*, is the area/time average of the retrieval error,
under the hypothetical assumption of continuous ob-
servation by the satellite. If the remote sensing method
were perfect, this term would vanish.

The error term «s, though referred to as ‘‘sampling
error’’ here, differs from the quantity referred to by the
same name in most previous publications on this topic.
In most other discussions, the term sampling error re-
ferred to what the difference R̂ 2 R0 would have been
in the absence of retrieval error. As defined here, how-
ever, the satellite average R̂ is assumed to include the
retrieval errors inherent in the system, and, rather than
being compared with the true monthly average rain rate
R0, it is compared with the hypothetical continuous time
average R* that includes the retrieval errors of the sys-
tem superimposed at each instant. The reason for this
change is that, as we shall see, estimates of sampling
error defined this way can be made directly from the
satellite data themselves with the help of some simple
modeling motivated by what has been learned about
rainfall statistics from ground-based data. These esti-
mates are exactly what are needed to look for retrieval
biases by comparing satellite averages with averages of
data from other sources.

Before embarking on a discussion of the main topic
of this paper, the statistics of «s, let us make a few
observations about the other component of the error in
(2), «*, defined in (4). Arguments such as those made
by Wilheit (1988) and Bell et al. (1990) suggested that
the random component of the retrieval error in R̂ might
be very small, because R̂ is an average over rain-rate
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estimates for all the many satellite instrument footprints
or fields of view (FOVs) falling within the grid box
during the month. Based on such arguments, the random
component of «* (i.e., departures of «* from the mean
retrieval bias ^«*&) should be even smaller, because «*
involves an average over every instant during the entire
month instead of an average over just the discrete visits
occurring during the month. From that viewpoint, the
error «* would vary little about the mean bias ^«*&, and
«* ø ^«*& would change only when the rain statistics
change (as might happen in going from one location to
another or one season to another). If this were the case,
the random component of the error « in (2) would be
almost entirely associated with the sampling error com-
ponent «s dealt with in this paper, and all that would
remain of the problem of completely characterizing «
would be ferreting out the average retrieval biases ^«*&.
Such retrieval biases would be discovered by comparing
the satellite averages R̂ with averages obtained with oth-
er systems with known error characteristics such as rain
gauges located in the area under study or a nearby
ground-based radar. The accuracy with which such com-
parisons could be made would be dictated by the un-
certainty in R̂ due to sampling—the subject of this paper.

It should be noted, however, that the variability in the
average retrieval error «* may not be so small as is
suggested by arguments such as those made by Wilheit
(1988) and Bell et al. (1990). Results presented later in
this paper suggest, for instance, that retrievals might
have biases that change depending on the relative
amounts of stratiform and convective rain in the grid
box during the month. Because these amounts can shift
from month to month because of natural variability in
the atmospheric system, the retrieval error «* might vary
from month to month in ways for which a convenient
description will have to be developed.

Let us turn now to the exploration of the statistics of
the sampling error «s. The statistics of «s are likely to
depend on many aspects of rain in a given region, such
as the amount and types of rainfall, the average synoptic
conditions, the season, sea surface temperatures, avail-
ability of moisture, aerosol concentrations, and so on,
as well as on the sampling and observational charac-
teristics of the satellite and its instruments. Two statistics
of central interest are the mean sampling error ^«s& and
the variance of the sampling error

[ ^ & 5 ^ & 2 ^«s&2,2 2 2s «9 «E s s (5)

where the angular brackets indicate an average over a
(hypothetical) ensemble of months similar in nature to
the month of data used to obtain the estimates R̂. (Here
the variance of a variable x is defined as ^x92&, where
primes indicate deviations from the mean, that is, x9 [
x 2 ^x&.) It is, in general, possible for there to be a
systematic bias in the sample average; that is, ^«s& ± 0.
For instance, if the satellite is in a sun-synchronous orbit
and therefore limited to observing the grid box at certain
times of the day, the average R̂ may be biased if there

is a diurnal cycle in the statistics of retrieved rain rates.
Although it is by no means a trivial matter to correct
the estimates R̂ for biases due to temporal (or spatial)
inhomogeneities in the statistics, it will be assumed that
such corrections have been made or that the biases due
to the pattern of observations are small when compared
with the other kinds of error, so that we may write

^«s& ø 0. (6)

From (5), then simply reduces under this assumption2s E

to the mean-squared sampling error ^ &.2«s

In a previous paper, Bell and Kundu (1996), here-
inafter abbreviated as BK96, derived a simple formula
expressing as a function of the mean rain rate and2s E

the ‘‘effective’’ number of samples provided by the sat-
ellite. A more general argument for the same formula
was subsequently developed by Bell and Kundu (2000),
hereinafter abbreviated BK00. They tested this formula
using the sampling characteristics of the TRMM satellite
and the statistical properties of a number of datasets
from ground-based rain gauge and radar measurements.
Because the statistics used in the earlier studies were
derived from data taken with ground-based instruments,
they did not include the effects of satellite remote-sens-
ing errors. In this paper, we continue the investigation
by comparing the formula’s prediction of the behavior
of for monthly averages obtained from a satellite-2s E

derived dataset.
The dataset studied here consists of retrieved rain

rates over the western tropical Pacific during the Trop-
ical Ocean and Global Atmosphere Coupled Ocean–
Atmosphere Research Experiment (TOGA COARE),
during November 1992–February 1993. The rain rates
are derived from SSM/I data taken from two DMSP
satellites that were orbiting at the time, the F10 and
F11. The algorithm used in the retrievals is similar to
but not so highly developed as the one presently being
used for TRMM. Details will be given later. It is found
that a fairly simple parameterization of the random error
in monthly averages over 2.58 3 2.58 grid boxes seems
to describe the data well, but that the dependence on
the mean rain rate in the grid box is different from what
was predicted by the model and supported by simula-
tions using ground-based data, as summarized in BK00,
and the error magnitudes are much higher.

The source of this difference appears to be the very
different responses of the satellite microwave instru-
ments and algorithm to the presence of stratiform rain
when compared with the ground-based measurements.
This explanation will be discussed in a separate paper.
Such a rain-type-dependent response has important im-
plications for using one satellite estimate to calibrate
another, as is sometimes done in combining datasets to
produce global maps of rainfall, or in comparing satellite
estimates with ground-validation datasets.

Despite the differences observed here in the sampling
error of satellite averages when compared with that pre-
dicted from simulations using ground-based averages,
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the approach described here can still be used to obtain
parameterized estimates of sE as a function of the av-
erage rain rate in a grid box and thus can be used to
supply fairly simple descriptions of the confidence lev-
els to be applied to each grid-box value of rain rate
generated from the satellite data. If we assume that the
sampling error «s is approximately normally distributed,
the ‘‘two-sigma’’ (ø95%) confidence intervals for the
grid-box average rain rate, setting aside the yet-to-be-
determined retrieval biases «* in the monthly averages,
would be

R* 5 R̂ 6 2sE. (7)

Even when the assumption of normality is not com-
pletely justified, though, the above approach to inferring
a bias is likely to be a good approximation to the correct
one, especially as the area and/or time period averaged
over becomes large. This, at least, proved to be the case
in a simulation study of sampling errors in monthly
averages (Bell et al. 1990).

In the following section we briefly review a model
for how the mean-squared sampling error should2s E

depend on rain rate and other factors and how the error
estimates obtained with ground-based data compare
with those from the simple model. In section 3 we de-
scribe the SSM/I-derived rain-rate data and the method
of estimating sampling error for SSM/I monthly aver-
ages using the differences in the monthly averages from
the F10 and F11 satellites. The dependence of sampling
error on mean rain rate is compared there with the model
predictions and with estimates made from ground-based
data. It is seen that SSM/I sampling errors vary less
with local rain rate than the model predicts and are
significantly higher than what are estimated from the
ground-based measurements.

In section 4 we pursue further the comparison of
SSM/I error estimates with estimates made from surface
radar taken in tropical oceanic environments. In partic-
ular, we find that SSM/I sampling error displays a simple
power-law dependence on local rain rate. In section 5
we show how this power-law dependence of sE on the
mean rain rate can be understood from the power-law
dependence of a number of other statistics derived from
the SSM/I data. In section 6 it is shown that sampling
error can be predicted well from the temporal variability
of area-averaged rain rate in a grid box according to a
simple relationship suggested by the theoretical models
described in section 2. This suggests an alternative, pos-
sibly more robust method of estimating sampling error.
In section 7 we report some preliminary results on rain-
fall statistics observed by TRMM and compare and con-
trast them with the results from the SSM/I observations.
Section 8 summarizes our results and gives some con-
cluding remarks. Some statistical and computational de-
tails are provided in two appendices.

2. Review of a simple model for sampling error

A simple theoretical model presented in BK00 sug-
gests how sampling error might depend on the rainfall
climate statistics and satellite sampling characteristics
for a given grid box. For the reader’s convenience and
to establish notation, we briefly review the formula and
the underlying concepts and definitions. For the detailed
derivations see BK00.

As was mentioned in the introduction, most prior dis-
cussions of sampling error, including that of BK00, were
carried out in a framework in which the contributions
of random retrieval errors to the total error were either
set aside or assumed to be negligible when averaged
over a month’s worth of data. In particular, the model
described below was developed based on assumptions
about the statistical behavior of rain inferred from rain
gauge and radar data. Because it is the purpose of this
paper to investigate whether the model is consistent with
rain statistics as inferred from satellite data, the descrip-
tion of the model is slightly adjusted to take into account
the model’s intended use here, using some of the no-
tation introduced in the previous section.

a. Definitions and overview

We are interested in an estimate of the space–time-
averaged rain rate

T

R* 5 (1/T ) dt R (t), (8)E A

0

where RA(t) is the instantaneous rain rate averaged over
a grid box with area A as it would be estimated by the
satellite if it could view the area at time t, and where
T is the averaging period, taken here to be one month.
In this paper, grid-box sizes are generally on the order
of 2.58 to 58 on a side.

The satellite, in general, views a grid box intermit-
tently and even then sometimes only partially. Thus the
instrument provides an estimate R̂i of the rain rate at
times {ti, i 5 1, . . . , n} averaged over an area Ai # A
corresponding to the region of overlap between the grid
box and the instrument swath during the overpass at
time ti. The satellite estimate R̂ of the true monthly
average is obtained as a weighted average of the indi-
vidual estimates R̂i:

n1ˆ ˆR 5 w R (9)O i in i51

with suitably chosen weights wi normalized to
n

(1/n) w 5 1. (10)O i
i51

A convenient way to obtain R̂ directly from the data is
to average the rain-rate estimates from all the instrument
footprints that fall within the area A over the period T.
(If the footprints are distributed relatively uniformly
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over the areas Ai then such an average is equivalent to
setting wi } Ai/A. If the footprints are nonuniformly
distributed but the area-averaged R̂i has been corrected
for this, the same choice for wi is appropriate. It is shown
in BK96 that, to the extent that satellite estimates of
rain have statistics similar to that of ground-based es-
timates, this choice of weights provides a near-optimal
estimate of the true monthly average for most grid boxes
seen by TRMM except at the highest latitudes.)

The uncertainty in the estimate R̂ is measured by the
mean-squared error defined in (5). As mentioned in2s E

the introduction, we assume that the satellite-average R̂
has been corrected, if necessary, for possible biases due
to inhomogeneities in the retrieved rain statistics, such
as might occur if there is a diurnal cycle. Equation (6)
follows from this assumption, which is equivalent to ^R̂&
ø ^R*& [using the definition of «s in (3)]. We can then
write

5 ^(R̂ 2 R*)2&.2s E (11)

As we have already mentioned, the sampling error
can depend on the local rainfall statistics as well as
sampling characteristics of the satellite. A simple model
for this dependence, described in the following subsec-
tion, is based on the straightforward assumption that
variations in the total rainfall amount in an area are
primarily due to variations in the number of indepen-
dently evolving precipitating systems present within it
rather than variations in the intensity of the individual
systems. Such an assumption is present in almost all
statistical treatments of rainfall, and some such as-
sumption can be used to justify rain algorithms that
estimate areal rainfall from areal coverage (e.g., Short
et al. 1993). The assumption is dynamically plausible,
at least in the Tropics, because the convective cores of
storms are quickly evolving small-scale phenomena,
limited in their development by local lapse rates and the
availability of moisture. Synoptic-scale lower-level con-
vergence may affect the probability of convective
plumes forming, but, once started, they are self-limiting.

Starting from this simple assumption, BK00 obtained
the formula

sE 21/25 C(RAS) , (12)
R

where

n

S 5 A /A (13)O i
i51

is the ‘‘effective number of full-area sweeps’’ of the
grid box A by the satellite instrument swaths, and the
prefactor C depends only weakly on a variety of rainfall
characteristics consistent with a given value of the mean
rain rate R 5 ^R*&, as described below. The S21/2 de-
pendence of relative sampling error predicted by (12)
was seen by BK96 in simulations with tropical oceanic
rain statistics. Behavior very close to this prediction was

also seen in a study of satellite estimates of rainfall by
Chang and Chiu (1999). Arguments for an R21/2 depen-
dence of relative sampling error on rain rate like that
in (12) were given in BK96, who noted some evidence
for it when estimates from simulations with radar data
taken over southern coastal Japan (Oki and Sumi 1994)
were plotted versus R. A similar analytical dependence
of sampling error on R is discussed by Huffman (1997).
Quartly et al. (1999) provide a clear review of arguments
for (12) and an example of an interesting application of
these ideas to a rain climatic description developed with
data from the Ocean Topography Experiment/Poseidon
satellite dual-frequency altimeter.

Numerous estimates of rms sampling error have been
made in the literature using simulated satellite sampling
of data taken by ground-based measurement systems in
a variety of geographical regions. These estimates there-
fore omit the contributions of satellite-retrieval errors
to the averages given in (8) and (9); instead, they include
the errors inherent in rain gauge and radar systems.
BK00 examined many of these estimates and found that
the dependence of sE/R on R was predicted well by (12)
in those regions where data were available in sufficient
quantities. In particular, as mentioned above, results of
simulations with radar data over southern coastal Japan
by Oki and Sumi (1994) agree very well (BK96) with
(12); and Steiner (1996) obtained error estimates using
simulations with rain gauge and radar data from Darwin
and Melbourne, Florida, and found that he could fit the
dependence of error on R with an expression close to
(12).

b. Model explanation

A simple model that yields the relationship (12) can
now be described. A more thorough discussion is given
by BK00. The model assumes that rainfall consists of
individual uncorrelated rain events having, on average,
area a and duration 2t a. From these assumptions they
derived an expression for C in (12),

C 5 (arc)1/2[1 2 2t a/(T/S)]1/2, (14)

where rc is the mean nonzero rain rate (subscript c for
‘‘conditional’’). The ratio T/S can be thought of as the
average time interval between two consecutive full-area
observations by the satellite. When the sampling is
sparse, one has T/S k 2t a, and in this limit C ø arc.Ï
When the effective sampling interval is comparable to
t a, this simple cell model is no longer applicable, and
one must employ a more accurate representation of the
statistical properties of the local rain field, an example
of which is described next.

A somewhat different explicit form of the constant
C was derived by Bell et al. (1990) using an approach
originally due to Laughlin (1981). Assuming that the
entire area A is sampled at regular intervals Dt 5 T/S,
they obtained the formula

ø ( /S) f (Dt/2tA),2 2s sE A (15)
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where

5 ^ (t)&2 2s R9A A (16)

is the variance of RA(t), the instantaneous rain rate spa-
tially averaged over the area A; tA is the corresponding
correlation time [(1/e)-folding time of the autocorrela-
tion of RA(t), assumed to be purely exponential]; and

f (n) 5 cothn 2 1/n. (17)

The approximation in (15) assumes T k tA, which is
certainly valid when T is on the order of 1 month, given
that tA is typically 4–10 h. If rain statistics in the grid box
area A can be treated as being homogeneous, Bell et al.
(1990) show that the variance can be expressed as2sA

5 s2 L2/A,2s A (18)

where

s2 5 ^ (t)&,2R9FOV,i (19)

is the variance of RFOV,i(t), the instantaneous rain rate
spatially averaged over the ith satellite footprint in the
area A at time t, and where L2 can be thought of as the
effective area of a fluctuation in the rain-rate field that
is statistically independent of other such areas within
the grid box A, in analogy with the definition of an
‘‘effectively independent sample size’’ for a time series
by Leith (1973), or for data on a sphere by Madden et
al. (1993). The value of L2 is given by

N N0 0A
2L 5 r(|x 2 x |), (20)O O i j2N i51 j510

where r(z) denotes the spatial correlation between rain
in two footprints separated by a distance z, N0 is the
total number of footprints in A, and the average is per-
formed over all pairs of footprints. Expressions (18) and
(20) can be derived from (16) if RA(t) is written as an
average over the satellite FOVs contained within A,

N01
R (t) 5 R (t), (21)OA FOV,iN i510

and this is substituted into (16). Defining r(|xi 2 xj |)
5 s22 ^ & then gives the relationship (18) withR9 R9FOV,i FOV,j

the definition of L in (20). Note that the value of L
may in principle vary with both FOV size, which affects
r(z), and the area A, which affects the range of sepa-
rations |xi 2 xj | encountered in the double sum.

In appendix A it is shown that

s2 5 1 p(1 2 p) ,2 2ps rc c (22)

where rc and are the mean and variance of nonzero2sc

rain rate (i.e., conditional on RFOV . 0). Because p, the
rain probability, is generally small,

s2 ø p( 1 ).2 2s rc c (23)

Combining (15) and (18) and using R 5 prc and (23),
one again obtains formula (12) for the sampling error,
with the identification

C 5 L[rc(1 1 )]1/2[ f (Dt/2tA)]1/2,2mc (24)

with mc [ sc/rc. It should be pointed out that although
the quantities p, rc, sc, and L may each depend strongly
on the footprint size, our simple theory leads to the
expectation that expressions (14) or (24) determining
the constant C are insensitive to it. Short et al. (1993)
have suggested that the ratio mc 5 sc/rc is relatively
constant over a range of footprint sizes, averaging times,
types of data (rain gauge or radar) and climates. In the
limit of sparse sampling, constancy of mc would imply

C ø const 3 L,1/2rc (25)

which should be compared with (14). Note that unless
A is much larger than a typical rain event, L2 in (20)
will depend nontrivially on A and thereby change the
A dependence of sE in (12). In fact, when A approaches
the size of a single footprint, it is easy to see from (20)
that L2 ø A.

In trying to understand the dependence of sampling
error sE on the statistical characteristics of rain, a num-
ber of parameters describing the rain have been intro-
duced in this section, including R, sA, s, tA, L, p, rc,
sc, and mc. The next sections will attempt to estimate
sE for monthly averages of SSM/I rain-rate retrievals,
and explore how variations in sE are related to changes
in these parameters.

3. Random error of monthly SSM/I rain rates

Rain estimates made from SSM/I observations pro-
vide a way of testing directly the validity of the proposed
simple theory of sampling error. Coverage by the SSM/I
as measured by S in (13) is very close to that of the
TRMM Microwave Imager passive microwave sensor
(TMI) for grid boxes at low latitudes, and, if retrieval
errors did not differ much between the two systems, the
sampling errors should be similar in size as well. In this
section we shall investigate the statistical behavior of
the retrieved rain rates and the inferred statistics of ran-
dom errors in gridded monthly averages of retrievals.

a. The SSM/I dataset

The dataset we used consists of rain data from two
DMSP satellites, the F10 and F11, in nearly sun-syn-
chronous polar orbits around the earth. The data were
taken during the four-month Special Observing Period
(SOP) of TOGA COARE from November 1992 to Feb-
ruary 1993. Local visit times of the F10 and F11 during
the SOP were roughly 0930/2130 and 0530/1730, re-
spectively. The SSM/I on each satellite views a given
spot on the earth an average of about 30 times per
month, so that S ø 30 in (12). (For the TRMM micro-
wave instrument, S ø 30 as well, but local visit times
shift over the course of a month.)

Rain rates were derived using the Goddard Profiling
Algorithm, which is based on the method described by
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Kummerow and Giglio (1994a,b), modified following
the description given by Kummerow et al. (1996). The
dataset was generated as part of the Third Algorithm
Intercomparison Project, as described by Ebert et al.
(1996), and in more detail by Ebert and Manton (1998).
Rain rates are estimated for footprints, which may be
thought of as circles approximately 28 km in diameter,
even though in reality they are elliptical in shape, the
response of the microwave antenna is nonuniform over
the FOV, and there is blurring due to the finite integra-
tion time of the SSM/I instruments. Kummerow and
Giglio (1994b) provide a more detailed discussion of
this topic. The retrieved rain rates are provided along
successive arcs, each containing 64 partially overlap-
ping footprints and covering altogether a swath about
1400 km wide.

We study the statistics of rain in the region extending
from 108S to 108N and from 1358 to 1758E in the tropical
western Pacific. This region includes the area where the
TOGA COARE Intensive Flux Array (IFA) was located.
For an optimal choice of the grid-box size for our sta-
tistical analysis one needs to strike a compromise among
several competing factors. The box needs to be large
enough so that rain rates in neighboring boxes can be
assumed to be statistically uncorrelated. This is essential
for treating collections of grid-box averages as sets of
statistically independent samples, so that standard sta-
tistical methods of estimating confidence intervals for
the averages can be used. On the other hand one would
like the boxes to be small so that there are as many
boxes as possible, thereby giving us a more detailed,
smoother picture of the dependence of the retrieval sta-
tistics on local rain rate, as will be clear in the next
section. A small box size also increases the likelihood
that rain statistics within the box can be regarded as
approximately homogenous. With these factors in mind
we have chosen a grid-box size A 5 2.58 3 2.58.

b. Estimate of the random error in grid-box averages

The SSM/I dataset itself does not provide access to
the monthly average rain-rate R* appearing in the def-
inition of sE in (11). To circumvent this difficulty, we
use a procedure, adapted from Chang et al. (1993) and
used by Chang and Chiu (1999), to estimate the rms
error sE for either satellite. Consider the mean-squared
difference between the F10 and F11 estimates of a grid-
box monthly average, ^(R̂10 2 R̂11)2&. We shall assume
that the continuous time average R* for the rain occur-
ring in the grid box during the month as would be seen
by hypothetical, permanently stationed F10 and F11 are
the same. This assumption means that the same system-
atic errors would be made in retrieving rain rates using
the F10 or F11 if they happened to be observing the
same spot at the same time. The assumption is reason-
able, because the instruments on the two satellites are
of the same design, and the satellites orbit at similar
altitudes. The fact that the averages of the F10 estimates

and the F11 estimates in the dataset, 0.271 and 0.263
mm h21, respectively, agree to within 3% supports such
an assumption.

Based on this assumption, we can write

^(R̂10 2 R̂11)2& 5 ^(«10 2 «11)2&

5 ^ & 1 ^ & 2 2^«10«11&2 2« «10 11 (26)

with
ˆ« [ R 2 R*, and (27a)10 10

ˆ« [ R 2 R*. (27b)11 11

We shall argue below that both the squared means ^«10&2

and ^«11&2 and the covariance ^«10«11& are small in com-
parison with the mean-squared errors ^ & and ^ &. If2 2« «10 11

the numbers of visits to the grid box by the two satellites
are similar, so that ^ & ø ^ &, then, as proposed by2 2« «10 11

Chang and Chiu (1999),

^(R̂10 2 R̂11)2& ø ,22s E (28)

where is the sampling error of either satellite [see2s E

definition (5)].
Because the equatorial crossing times of the F10 or

F11 are confined to two times of day differing by about
12 h, and each satellite averages about 15 morning and
15 evening observations, the means ^«10& and ^«11& might
differ significantly from zero if there is a diurnal vari-
ation in the mean rain rate. (The diurnal variation would
have to be more complex than a simple first-harmonic
sinusoid to contribute in this way, because of the 12-h
difference in the two viewing times for either satellite.)
There is considerable evidence for a diurnal cycle in
rain statistics over the western tropical Pacific. Hendon
and Woodberry (1983), for example, map the amplitudes
of the diurnal cycle based on an index for deep con-
vection obtained from satellite-measured infrared
brightness temperatures. The amplitudes tend, however,
to be relatively weak, except over land. Short et al.
(1997) find a diurnal variation in the rainfall observed
with radar in the TOGA COARE IFA, with an amplitude
that is about 25% of the mean rain rate. Values of ^«10&
and ^«11& generated by diurnal variability at these levels
are unlikely to contribute significantly to the mean-
squared errors ^ & and ^ &, except possibly over some2 2« «10 11

land areas. Because the portion of the area with land
included in the dataset is less than 25% of the total area,
it is unlikely that diurnal cycles in the statistics will
affect estimates of made using (28). Moreover, the2s E

close agreement of the means ^R̂10& and ^R̂11& already
discussed and the lack of significant lagged correlations
in rain rate at lags near 24 h, discussed later, also argue
for neglecting contributions to (28) from diurnal-cycle
effects.

The neglect, in (28), of the contribution of the co-
variance term ^«10«11& in (26) would be justified if the
observations by the two satellites were far enough apart
in time to be nearly uncorrelated. Although the legiti-
macy of this assumption may be suspect, given that the
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satellites can in principle view the same scene only 4–5
h apart, several factors may justify the approximation.
Each satellite visits a grid box only once per day on
average, and the visits of one satellite are generally well
separated from the other’s. Moreover, some simple cal-
culations based on Laughlin’s (1981) approach show
that, for two satellites with idealized sampling like that
of the F10 and F11, expression (28) is very accurate,
even though the two averages R̂10 and R̂11 are not, in
fact, statistically independent. It should be noted, how-
ever, that the same calculation indicates that the ap-
proximation (28) is not so good if the satellites were to
have closer sampling times or, more surprisingly, if one
satellite’s visit times were exactly midway between the
other’s. Last, this approximation was corroborated by
performing sampling error calculations using the meth-
od developed in BK96 and the exact sampling patterns
of the F10 and F11 satellites, and the approximation
(28) is borne out at the level of 5% accuracy.

c. Statistical analysis of the data

Monthly averages of retrieved rain were obtained for
each 2.58 3 2.58 grid box in the TOGA COARE SOP
dataset described above, yielding a total of 512 samples
(128 grid boxes, 4 months of data). Grid-box results
were also segregated according to whether the grid box-
es contain mostly land, mostly ocean, or a mixture, but
the differences in the statistics for these subsets were,
for the most part, difficult to discern. They will be dis-
cussed later.

The coverage provided by the two satellites can vary
from grid box to grid box and month to month. To gauge
this, let us define S10 and S11 as the effective numbers
of full viewings of a grid box by the F10 and F11,
respectively, as measured by (13). To compute S10 and
S11, a method is needed for estimating the areal fraction
Ai/A for each satellite visit i.

1) ESTIMATION OF S10 AND S11

If the number of footprints required to cover the entire
area A is known, the ratio of the actual number of foot-
prints in A to the full-coverage number provides an es-
timate of the fraction Ai/A for that particular visit. A
possible method of determining the full-coverage foot-
print number is to examine the distribution of the num-
ber of footprints observed in many overflights of a grid
box. Because the SSM/I swath is wide in comparison
with the grid-box size, we would expect a histogram of
the number of footprints observed in a box to peak at
the maximum possible number. In reality, such histo-
grams are not so simply behaved. This is, in part, be-
cause the density of footprints varies with location in
the instrument swath, being largest near the swath’s edg-
es. Sporadic data loss due to instrumental and algorith-
mic problems can also occur. As a result, the histogram
of footprint counts displays a somewhat broadened peak

at the largest footprint counts. Although a more exact
method of determining the fractions Ai/A could certainly
be devised, it is sufficient for our purposes to define the
full-coverage footprint count as the number of counts
Nmax where the histogram peaks. We estimate the frac-
tion Ai/A for a given visit to a grid box to be the ratio
of the actual footprint count to Nmax. This estimate can
sometimes be greater or less than 1 even though the
swath completely covers the grid box, but the monthly
sums S10 and S11 that result from this choice are rea-
sonably good approximations to the values that would
be obtained from more geometric estimates, and in ad-
dition take account of occasional data dropouts. For the
SSM/I dataset, we found Nmax ø 120. Values of S10 and
S11 computed this way for the 512 cases ranged between
15 and 34, with a mean value of about 28, indicating
considerable variations in the satellite sampling. (Note
that variation in the number of days available in each
month is also a contributing factor.)

2) REMOVING EFFECTS OF VARIABLE COVERAGE

Because our chief concern here is with how well (12)
predicts the dependence of sE on local rain rate, it would
be preferable if we could minimize the effects on our
analysis of the varying coverage by the satellites. Ar-
guments very similar to those used in deriving (12)
predict

R 1 1
2 2ˆ ˆ^(R 2 R ) & 5 C 1 , (29)10 11 1 2A S S10 11

where S10 and S11 are the effective numbers of full view-
ings of a grid box by the F10 and F11, respectively, as
measured by (13). By defining a ‘‘mean’’ coverage S
for the two satellites by

2/S 5 1/S10 1 1/S11, (30)

we can recast (29) in a form identical to (12) even if
the relative coverage by the two satellites varies. As in
(12), the coefficient C in (29) may depend on local rain
statistics in ways suggested by (14) or (24), but it should
be relatively insensitive to changes in coverages S10 or
S11. (It bears repeating, however, that the rain statistics
determining C are those of the ‘‘measured’’ rain, in-
cluding the effects of randomly varying retrieval error.)

Consider the result of multiplying (29) by S/2:

S^(R̂10 2 R̂11)2&/2 5 C 2R/A. (31)

The ensemble average ^ & here indicates an average over
many different sequences of rain events all having the
same monthly mean R and observed by the two satel-
lites. Because changes in S have relatively little effect
on the right-hand side of (31), the left-hand side will
be insensitive to changes in S as well. This fact allows
us to obtain estimates of the right-hand side of (31) from
averages of data with differing values of S, so that we
can write



946 VOLUME 40J O U R N A L O F A P P L I E D M E T E O R O L O G Y

FIG. 1. Relative sampling error of monthly grid-box averages over
the equatorial western Pacific as a function of mean local rain rate
R. SSM/I estimates have been corrected for missing data using (34).
A power-law fit, sE/R 5 0.26R20.27, is shown. Estimates using surface
radar data assume coverage identical to what is provided by the
TRMM microwave instrument, averaging 30 visits per month, very
close to the SSM/I sampling. GATE radar data were taken during
1974. TOGA COARE radar data were taken contemporaneously with
the SSM/I data.

C 2R/A 5 ^S(R̂10 2 R̂11)2&/2, (32)

where now the angular brackets are meant to indicate
an average over an ensemble of months with varying
rain sequences with monthly average R and varying
satellite sampling as measured by S.

3) DEPENDENCE OF RMS ERROR AND OTHER

STATISTICS ON R

Guided by (32), then, we investigate the dependence
of on rain rate by first computing the mean rain rate2s E

R̂ 5 (R̂10 1 R̂11)/2, (33)

for each of the 512 grid boxes and months. The 512
pairs of estimates from the F10 and F11 are sorted into
eight bins in order of increasing values of R̂, with 64
samples to a bin. For each bin, an average over the 64
values of S(R̂10 2 R̂11)2/2 gives us an estimate of C 2R/A,
using (32), at the mean R for that bin. The various FOV-
scale rain statistics introduced in section 2, namely s2,
p, , rc, mc, and L, are also computed for each rain-2sc

rate bin R and are discussed in a later section. The
binning process destroys information regarding the geo-
graphical location of a particular box and the obser-
vation month, because samples containing similar
monthly averaged rain rates are lumped together re-
gardless of their location or time of observation. Al-
though rain statistics no doubt change as various factors
affecting the formation and development of precipitat-
ing systems within each grid box change, the operating
assumption is the same as that of the simple model: if
the frequency with which rain events occur in a grid
box is known, all other rain statistics at that location
can be predicted reasonably well.

It was mentioned in section 2 that sampling errors
for monthly averaged TRMM TMI data have been es-
timated with simulations using ground-based measure-
ments in a variety of rain environments. Near the equa-
tor, the TMI and a DMSP satellite carrying SSM/I pro-
vide almost identical coverage, as measured by S, if
both instruments are providing rain estimates from the
entire instrument swaths during the month. With perfect
coverage, S is approximately 30 for both satellites. To
compare our SSM/I results to these earlier TRMM stud-
ies, (12) and our estimates of C 2R/A from (32) can be
used to compute what the random error sE in monthly
averages of SSM/I data would be for the same coverage
S0 5 30 assumed in the TRMM studies, via

1/2
2ˆ ˆ^S(R 2 R ) &/210 11s 5 . (34)E [ ]S0

Figure 1 shows a plot of sE/R estimated for a single
SSM/I providing maximum possible coverage during a
month (i.e., assuming an average of 30 visits per month).
Results are plotted versus the average R for each bin.
Error bars are 95% confidence limits obtained under the
assumption that differences in monthly means behave

statistically like independent, normally distributed var-
iables.

Also shown in Fig. 1 are sampling-error estimates
based on two radar datasets collected from ships sta-
tioned over open ocean. The two estimates labeled
‘‘GATE’’ use the statistics of data taken over the eastern
tropical Atlantic during phases I and II of the Global
Atmospheric Research Program Atlantic Tropical Ex-
periment (GATE) in 1974. The six estimates labeled
‘‘TOGA COARE’’ use the statistics of radar data from
two ships during the three cruises of the SOP. The meth-
ods used in obtaining these estimates are described fully
in BK00. Comparison of the SSM/I estimates with the
TOGA COARE estimates is particularly appropriate be-
cause the data were taken during the same four months,
although the radar data cover only a limited region
around 28S, 1568E.

Figure 1 brings out two salient characteristics of the
SSM/I error estimates: 1) estimated errors in SSM/I av-
erages, which may include random retrieval errors, are
30% or more of monthly mean rain rates and are con-
siderably larger than previous error estimates based on
surface radar data (which do not, of course, include
satellite remote sensing errors but do include the errors
in the radar-derived rain rates) and 2) even though both
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the simple model and experience (though admittedly
limited) with ground-based data suggest that sE/R might
be described by a power law with exponent 2½, the
SSM/I errors are better described by a power law with
an exponent of about 20.27. As we shall see later in
section 5, this departure from the simple R21/2 depen-
dence in (12) can be accounted for at least in part by
the R dependence of some of the other rainfall statistics
that determine the prefactor C via equations such as
(24).

Note that a number of sampling error estimates have
been made with ground-based data other than those
shown in Fig. 1. They are reviewed by BK00. Two
extensive studies, by Oki and Sumi (1994) and Steiner
(1996), yielded sampling-error estimates that are com-
parable in magnitude to the SSM/I values in Fig. 1,
except at the highest rain rates, where the SSM/I esti-
mates are larger. Because these studies used data from
southern coastal Japan and from Darwin, on the northern
coast of Australia, however, it is not clear that com-
parison with the SSM/I results is appropriate here. Rain
in tropical coastal areas is very different in character
from rain over the open ocean. The SSM/I statistics we
used are largely determined by rain over oceanic areas.
The TOGA COARE radar statistics shown in Fig. 1 are
from an area and time period included in the SSM/I
dataset and so would be most nearly comparable.

It is interesting to note that Chang et al. (1993) and
Chang and Chiu (1999) also obtained rms error as a
function of the mean rain rate on a 58 3 58 grid, using
global oceanic monthly estimates of rainfall obtained
with a microwave emission–based algorithm. If Chang
et al.’s (1993) results are converted to the format used
here, they can be fitted to sE/R ø 0.26R20.26 (R: mm
h21). Similar results are reported in Chang and Chiu’s
(1999) study. The relative errors they found are roughly
50% higher than the corresponding errors for 58 3 58
boxes we found (not shown) using the SSM/I dataset
studied here. We conjecture that, because the grid boxes
in Chang et al.’s (1993) study were all 58 3 58 regardless
of location, boxes at higher latitudes that contributed to
their statistics had smaller physical areas, and (12) pre-
dicts that they would have higher rms errors than would
boxes near the equator. Thus, the higher errors of ex-
tratropical grid boxes may have been averaged with the
errors for tropical grid boxes and resulted in an overall
increase in average error, whereas our analysis covers
only equatorial areas.

Figure 1 has shown that, where they can be compared,
the statistics of the microwave-retrieved rain rates clear-
ly differ in important ways from the statistics of surface
radar data. In the sections that follow we shall try to
identify where the differences occur, propose some use-
ful diagnostics for these differences, and suggest how
(12) might be modified to take them into account.

4. Exploration of ground radar–SSM/I differences
The assumptions of the simple model in section 2

lead to predictions for sampling error such as (15),

where mean-squared error is the product of the variance
of area-averaged rain rate, , and a factor f (Dt/2tA)/S2s A

determined by the temporal sampling pattern of the sat-
ellite and by the correlation time tA of area-averaged
rain rate. We can rewrite it somewhat schematically as

ø [ f (T/2tAS)/S].2 2s sE A (35)

In reality, when satellite visits are not evenly spaced
and the area A is not viewed in its entirety on each visit,
the dependence of f/S on a satellite’s sampling pattern
is more complicated than the simple dependence on S
in (35) suggests. Based on an earlier study (BK96) with
TRMM sampling, however, (35) apparently captures
much of the change in sampling error with satellite sam-
pling.

As we shall see later, the correlation times of SSM/I-
retrieved rain rates tend to be similar in size to the
correlation times seen in radar data and small when
compared with the typical time interval between SSM/I
visits. We therefore conclude that the factor f cannot
explain the differences in sampling errors in Fig. 1. Most
of the difference may be due to differences in variability
of area-averaged rain rate as reported by satellite and
ground-based systems, and we turn now to investigating
the differences in for the two.2s A

By combining (12) and (35) it is easy to show that
the simple model predicts that should increase lin-2s A

early with R, so that the ratio /R should remain con-2s A

stant with changing local rain rates. Figure 2 shows this
quantity plotted as a function of R using the same bin-
ning procedure as in Fig. 1. To improve the legibility
of the figure, only error bars (95% confidence intervals)
for the ratio computed from GATE radar data are shown.
They are representative of the estimated errors in the
other plotted quantities. (Also shown are corresponding
values obtained from TRMM TMI retrievals. These will
be discussed later.) Given the level of uncertainty, it
could be argued that the surface radar statistics are con-
sistent with the constancy with R predicted by the simple
model, though synoptic conditions at the two radar sites
are sufficiently different that some underlying changes
in the statistics may also be occurring. Whether or not
this is so, it is evident from Fig. 2 that variances in
SSM/I area averages are significantly larger than for the
same averages obtained with surface radar, and they also
probably increase faster with R than the surface data.

Equation (18) indicates that is determined by the2s A

variance of the individual SSM/I ‘‘point’’ estimates of
rain rate (i.e., s2 for FOV estimates) and by L2, the area
of statistically independent rain events. Figure 3 shows
the dependence of L on R, calculated using (20). The
calculation of L had to be adapted to handle the actual
spatial distribution of SSM/I footprints and is described
in the appendix. In this figure and the plots that follow,
the statistics for each value of R are averages over 64
grid-box/months with monthly means in the neighbor-
hood of R, just as in Figs. 1 and 2. SSM/I estimates for
regions with monthly rain rates similar to those observed
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FIG. 2. Ratio of the variance of instantaneous area-averaged rain
rate RA(t) to R, A 5 2.58 3 2.58, computed following the procedures
used for Fig. 1. The simple model predicts that this quantity should
be insensitive to local rain rate. Error bars (95% confidence limits)
are shown only for GATE, but others would have similar errors. A
power-law fit to the SSM/I points, /R 5 3.4R0.62, is shown. Cor-2s A

responding statistics derived from TRMM TMI data are also plotted
and are discussed in section 7.

FIG. 3. The scale of ‘‘statistically independent rain events,’’ for
SSM/I data in 2.58 3 2.58 grid boxes, from (20). If spatial correlations
decreased exponentially as exp(2z/l ) with separation z and the di-
mensions of A are large when compared with l, then l 5 L/ 2p .Ï
See appendix for details.

FIG. 4. Mean rc and standard deviation sc of SSM/I rain rates for
FOVs with nonzero rain, and the ratio mc 5 sc/rc.

by the surface radar in TOGA COARE, R ø 0.2 mm
h21, yield values of L ø 100 km (corresponding to a
‘‘correlation distance’’ of about 40 km—see appendix).
If the TOGA COARE radar data are smoothed to a
spatial resolution corresponding to the scale of the
SSM/I footprint area, about p(28/2) ø 25 km, andÏ
are used to calculate L, a value of L very close to the
SSM/I value is obtained. It is therefore the larger values
of s2 for the SSM/I rather than differences in L that are
mostly responsible for the larger values of seen in2s A

Fig. 2.
Equation (23) relates values of s2 to the average areal

coverage by rain p and the mean and variance of nonzero
rain rates, rc and . Figure 4 shows the conditional mean2sc

rc 5 R/p and standard deviation sc of nonzero rain seen
by SSM/I, and also the ratio mc 5 sc/rc, as a function
of R. The statistics are comparable in size to those re-
ported for GATE data by Short et al. (1993), especially
mc. The ratio mc is nearly constant, a phenomenon also
noted by Short et al. (1993) in other rain data. As Conner
and Petty (1998) have remarked, however, there are sub-
tle threshold-dependent effects in the conditional sta-
tistics that make intercomparison of the radar and SSM/I
statistics problematic. The radar is able to detect much
smaller rain rates than the SSM/I can. When values of
rc, sc, and mc are calculated from surface TOGA
COARE radar data smoothed to a spatial resolution cor-
responding to the scale of an SSM/I FOV [ø(25 km)2],

we find values rc 5 0.5 mm h21, sc 5 1.4 mm h21, and
mc 5 2.7 6 0.3. They are very different from the satellite
values. For example, we see in Fig. 4 that, for the SSM/I
data, mc ranges between 1.21 and 1.44. The difference
in the values of mc obtained by us from TOGA COARE
radar data and the values obtained from SSM/I data and
in the analyses of surface data by others suggests that
mc may depend on the threshold of detectability of rain
in a way that was fortuitously absent in other studies.

To study temporal correlations of area-averaged
SSM/I rain estimates, a time series of the average rain
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FIG. 5. Autocorrelation of SSM/I rain rate averaged over 2.58 3
2.58 grid boxes for various categories of monthly R. Correlations are
shown only when more than about 400 pairs of observations are
available at a given separation t . Curves through data points are
smoothed interpolations.

rate for full-area observations at each grid-box location
was obtained. All visits with greater than about 85%
coverage, determined from the footprint counts as ex-
plained in section 3c(1), were included to get a time
series that is sufficiently dense. Because the visit times
of the F10 and F11 sometimes differed by as little as
3h, these series had sufficient time resolution for useful
time correlations to be obtained. Figure 5 shows the
lagged autocorrelations of RA(t) sorted into the same
eight climatological rain-rate bins used in the previous
figures; that is, autocorrelations for a given R represent
the statistics of 64 time series with monthly means in
the neighborhood of R. For each of the eight rain-rate
categories, we fitted the lagged autocorrelation function
of the area-averaged rain rate to a simple exponential
form exp(2|t 2 t9|/tA). The correlation times tA were
found to be about 6 h and nearly independent of R,
except at the lowest and highest rain rates. Spectral
analysis of the time series indicated enhanced spectral
power at frequencies corresponding to periods of 2–5
days and 40–50 days. The former may possibly be re-
lated to the convective disturbances with that timescale
discussed by Takayabu and Nitta (1993), and the latter
may be related to the Madden-Julian oscillation (Mad-
den and Julian 1972; Chen and Yanai 2000).

It is well known that the statistical behavior of rainfall
differs over land and ocean. To investigate this fact
quantitatively, we employed a land/ocean mask at 2.58
spatial resolution. Of the 128 grid boxes in the chosen

area, 97 are categorized as covered by ocean, 23 as
mostly covered by land—largely concentrated around
New Guinea in the southwest quadrant of the area we
studied—and 8 as containing substantial amounts of
both. The statistics of land-containing grid boxes were
sorted into only four bins with increasing rain-rates R
in order to have a reasonable number of samples in each
bin. Monthly rain rates in the land-containing boxes
tended to range over values less than half as large as
for the ocean-covered boxes. Most land–ocean differ-
ences in the statistics were indistinguishable from var-
iability caused by small-sample effects. The conditional
means rc, however, were 50% to 75% larger over land,
unlike the values of sc, which were, perhaps surpris-
ingly, a little smaller. The ratio mc ranged from 1.43 to
1.56 over ocean and from 0.85 to 1.0 over land. A
pronounced peak in spectral power was found in the
time spectrum of rain over land-covered boxes at a fre-
quency of 1 day21, indicating the presence of a strong
diurnal cycle. No spectral peak was evident in oceanic
rain rates at that frequency. There is also little sign of
any enhanced autocorrelation at t 5 24 h in Fig. 5,
except perhaps for grid boxes with the smallest rain
rates, indicating that statistics tended to be dominated
by the statistics of the oceanic grid boxes.

5. Power-law descriptions of SSM/I statistics

The statistics of the SSM/I retrieved rain rates are
described very well by simple power-law dependences
on R, as can be seen from the power-law fits shown in
Figs. 1–4. Because this approach provides a much more
concise description of the statistics, we present these
results here.

It is convenient to express the various statistical quan-
tities as powers of the dimensionless quantity p rather
than R. We introduce the three basic exponents a, b,
and g through the relations

rc 5 r0 pa, 5 pb, and L2 5 pg. (36)2 2 2s s Lc 0 0

Note that in the simple model all the exponents would
vanish. From the definition R 5 prc it follows that

R 5 r0p11a, (37)

and if we treat the ratio mc as approximately constant,
(23) gives

s2 ø ( 1 )p11b.2 2s r0 0 (38)

(Strict constancy of mc would imply b 5 2a.)
The expression (18) for implies the power-law2s A

relation

5 ( 1 )( /A)p11b1g.2 2 2 2s s r LA 0 0 0 (39)

Because p and R are related by (37), the exponents a,
b, and g can be derived from the exponents obtained
with error-weighted least squares power-law fits to the
statistics in Figs. 3 and 4. We find that the SSM/I sta-
tistics can be reasonably well explained by the values
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FIG. 6. Estimates of the average product of SSM/I sampling error
and coverage S [defined in (13)], obtained from the statistic ^S(R̂10

2s E

2 R̂11)2&/2 as discussed in section 3, plotted against variance of in-
stantaneous grid-box-averaged rain rate . Each point represents the2s A

average of 64 grid-box/months binned according to monthly rain rate,
as in the previous figures. The 95% confidence limits for the slope
of the linear, zero-intercept, weighted least squares fit to the points
are 0.72 6 0.08.

a 5 0.17, b 5 0.53, and g 5 0.53. (40)

The coefficients of the power-law fits in (36) were found
to be

21 21r 5 4.5 mm h , s 5 7.6 mm h , and0 0

L 5 220 km. (41)0

If the relatively small effects on sampling error sE

due to changes in tA with R are neglected, (35) and (39)
imply

} p11b1g.2s E (42)

The relative sampling error for a single SSM/I satellite
shown in Fig. 1, when fitted to a power law in R,

sE/R } Rd, (43)

gives an exponent d 5 20.27 (instead of the 20.5 pre-
dicted by the simple model). The power laws (36) would
predict

d 5 2(1/2)[1 2(b 1 g 2 a)/(1 1 a)], (44)

or d 5 20.12 when the exponents in (40) are substi-
tuted. The discrepancy in the exponent obtained by di-
rectly fitting sE/R to a power law and the exponent
predicted using the other empirical exponents may be
due in part to the changes in the correlation time of
RA(t) at the smallest and largest rain rates R seen in Fig.
5 and the resulting changes in the factor f in (35). The
value of d that best fits the data is made still more
negative by the deviation from the power-law fit—pos-
sibly fortuitous—of for the smallest rain-rate bin2s A

(Fig. 2).

6. Alternative approach to estimating sE

Equation (35) suggests that mean-squared error in
monthly averages can be estimated from the variance
of instantaneous grid-box-averaged rain rate , the2s A

sample volume S, and a factor f that depends on the
sampling pattern of the satellite and the time correlations
of the grid-box-averaged rain rate RA(t). Because the
correlation time of rain is somewhat smaller than the
typical interval between satellite visits, the dependence
of f on tA and S is relatively weak, which suggests that

S, estimated by the right-hand side of (32), is pro-2s E

portional to . This result apparently is borne out by2s A

Fig. 6, where ^S(R̂10 2 R̂11)2&/2 is plotted against ,2s A

each point representing an average over 64 grid-box/
months with similar mean R as in Figs. 1–5. As (35)
predicts, the dependence of sE on R is mostly deter-
mined by the R dependence of sA. Their relationship is
described empirically by

5 (0.72 6 0.08) /S.2 2s sE A (45)

It is interesting to compare the empirical coefficient
in (45) with the theoretical model estimate based on
(15) and (17). If we use the correlation time tA 5 6 h
found in section 4 for most R and the mean monthly

areal coverage S 5 28, we calculate f (T/2tAS) 5 0.56.
Given the crude nature of the estimate, which assumes
exponential autocorrelation of RA(t) and equally spaced
observations in time by the satellite, the extent of agree-
ment with the observed value 0.72 is perhaps remark-
able. The fact that the empirical coefficient is larger than
the prediction may be an indication that the geometric
estimate of S used here overestimates the actual effective
amount of coverage by the satellite instruments.

7. Some preliminary TRMM results

The analysis so far described was motivated in part
by the need to supply a measure of the random error
for gridded monthly rain-rate products produced by
TRMM. From a rainfall-retrieval-algorithm point of
view, the TRMM’s TMI has an advantage over the
SSM/I because the TRMM satellite orbits closer to the
earth, giving the instruments improved spatial resolution
and the TMI includes a lower-frequency dual-polari-
zation 10.7-GHz channel in addition to SSM/I’s four
higher-frequency channels. Although the random error
in TRMM monthly rain climate data will be more thor-
oughly explored in a subsequent paper, it is interesting
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TABLE 1. Power-law dependence of rc, sc, and L on p, defined in (36), and power-law dependence of sA/R on R defined in (46), for TRMM
TMI statistics over the western tropical Pacific. As can be seen in Fig. 2, fits to the data must be obtained separately for small and large R.

a b g r0 (mm h21) s0 (mm h21) L0 (km) w0 d

R , 0.1 mm h21

R . 0.1 mm h21

1.02
1.44

3.40
0.90

0.46
0.44

24.6
104

379
14

175
165

3.27
1.34

0.05
20.34

to compare the performance of TRMM with what has
been learned about SSM/I here.

a. TRMM data

We used TMI surface rainfall retrievals made avail-
able by the Goddard Space Flight Center Distributed
Active Archive Center as official TRMM product 2A12,
version 4, for the 4-month period of January–April 1998
over the same geographical area as the one used in the
SSM/I study here. The TMI rain product has benefited
not only from the instrumental advantages mentioned
above, but also from the use of a version of the algorithm
more advanced than the one used with the SSM/I data.
The most important change in the algorithm is probably
the addition of a step that adjusts for the relative
amounts of convective and stratiform rain present in
each FOV, as described by Hong et al. (1999).

b. Data analysis results

The dependence of the statistics of TMI rain-rate data
on local rain rate R was determined in the same manner
as before, by binning the statistics for each 2.58 3 2.58
grid box and month according to the monthly mean R.
A plot of /R for TRMM is shown in Fig. 2. The2s A

number of bins was increased to 16 when it became
apparent that the statistics change in character above
and below R ; 0.1 mm h21, so that each point represents
an average of 32 rather than 64 grid-box results. It is
encouraging to see that the TRMM statistic has moved
closer to the radar values. The improvement is especially
marked at the higher rain rates, where the ratio is both
more nearly constant with R and considerably lower than
the SSM/I results.

Good fits of the TRMM results to power laws in R
can be obtained if a fairly sharp crossover of the ex-
ponent values for rain rates above and below R 5 0.1
mm h21 is allowed. The parameters of the fits in both
regimes are given in Table 1. The parameters for the
conditional rain statistics for TRMM are very different
from those of the SSM/I statistics given in (40) and
(41). Table 1 also gives the parameters w0 and d of a
power-law fit to the TMI data,

sA/R 5 w0Rd, (46)

from which estimates of TRMM rms error can be ob-
tained using (45). Note of course that these parameters
were obtained from fits to data from a very limited
portion of the globe and, in particular, are more rep-
resentative of oceanic data than of retrievals over land.

Further research is clearly needed to determine whether
similar parameterizations of error are possible globally
and seasonally.

8. Summary and conclusions

SSM/I rain-rate data taken during the TOGA COARE
experiment were used to estimate the rms sampling error
as defined in (5) in monthly averages over 2.58 grid
boxes in the western tropical Pacific. The satellite al-
gorithm that was used is a predecessor of the one cur-
rently used to process TRMM microwave data. The error
estimates were made two different ways: one estimate
was obtained from the rms differences of the monthly
averaged rain rates given by the F10 and F11 satellites;
a second estimate was obtained from the variance 2s A

of instantaneous area-averaged rain rates RA(t) and a
rough estimate of the temporal correlations of RA(t). The
two estimates agreed well. This result suggests that rea-
sonable estimates of random error in gridded monthly
averages might be made from and an approximate2s A

characterization of the time correlations of RA(t)—quan-
tities that can be obtained from the satellite data them-
selves. Such estimates will include the contributions of
random retrieval errors to the total error.

Over the ocean, both the magnitude of /R and its2s A

dependence on local rain rate R are clearly different for
the SSM/I rain estimates and surface radar estimates.
The higher variance of SSM/I estimates of RA(t) in com-
parison with radar appears to be due mostly to the larger
variance of individual footprint estimates, measured by
s2, rather than greater spatial correlations of the rain
data—to the extent they are measured by L. It will be
shown in a separate paper that the SSM/I estimates are
highly correlated with stratiform rain as identified in the
TOGA COARE surface radar data and are not so well
correlated with rain identified as convective; the SSM/I
rain estimates where there is stratiform rain are much
larger than the corresponding radar estimates, whereas
rain estimates where the radar reports convective rain
tend to be estimated as smaller by SSM/I. The net effect
is to make s2 large for SSM/I FOV estimates. These
conclusions apply, of course, only to the rain data gen-
erated by the particular algorithm used to produce the
dataset investigated here.

Little has been said here about how sampling error
depends on the grid-box area A. As was seen in (12),
the simple model would predict sE } A21/2. Equations
(15) and (18), however, indicate that this result is only
true if the area A is much larger than L2. The 2.58 3
2.58 boxes studied here are not quite large enough in
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this respect. Although increasing the box size to 58 3
58 reduces the number of samples per bin when the
statistics are binned by R, as was done in section 3, such
an experiment shows that the power-law dependence of

on R is almost the same for the two box sizes but2s A

that the dependence of on A is consistent with sA }2s A

A20.33 rather than with A21/2. Thus, increasing the box
size from 2.58 to 58 does not decrease sampling error
as much as the simple model would have predicted if
A were larger.

Based on our results, it is recommended that future
algorithm intercomparison projects include comparisons
of /R for grid-box sizes on the order of 2.58 or larger,2s A

in addition to comparing the mean rain rates themselves.
The ratio is easy to calculate and, as has been shown
here, can serve to bring out some aspects of the algo-
rithms that can be missed in point-by-point comparisons
but are important for climatological use of the data. This
quantity has the advantage that, other things being equal,
it is not so sensitive to instrument resolution and so
makes intercomparison of different measurement sys-
tems conceptually easier. The quantity can reveal the2s A

presence of correlated retrieval errors in the satellite
product, a possible byproduct of the reason for its being
larger in the SSM/I data than in the radar data, as will
be discussed in a subsequent paper.

An especially important result is that the quantity
can be used to estimate the accuracy of monthly2s A

averages of rain data via a relation like (45). Such an
estimate avoids some of the assumptions used in pa-
rameterizing error in terms of average R, though it re-
quires that the satellite dataset supply values of sA in
addition to R for each grid box.

Whether because of better resolution and additional
channels in the TMI or because of improvements in
algorithms, the statistics of TRMM TMI (version 4) rain
estimates from the western tropical Pacific may be sig-
nificantly closer to oceanic surface radar statistics than
are the SSM/I statistics. An improved TMI algorithm is
now being used to process TMI data, and we expect
even better agreement with ground-based data. This pos-
sibility will be examined in a future paper.
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APPENDIX A

Relation for s, p, rc, and sc

A derivation of (22) is given here for completeness.
Consider a set of N footprint-averaged rain-rate values

{ri | i 5 1, . . . , N} of which the subset of Nc values
{ | a 5 1, . . . , Nc} is nonzero. (We assume N and Ncria

k 1 and that the rain statistics are homogeneous.) The
fraction of nonzero values is p 5 Nc/N. The average
rain rate for the entire set is R 5 ri/N. Of courseNSi51

only the nonzero terms contribute to the sum. The av-
erage rain rate conditional on nonzero rain is then

Nc

r 5 r /N 5 R /p.Oc i ca
a51

The variance of the entire set {ri} is given by

N N

2 2 2 2s 5 (r 2 R) /N 5 r /N 2 R .O Oi i
i51 i51

The variance conditional on nonzero rain can be com-
puted similarly for the subset:

N N Nc c

2 2 2 2 2 2s 5 (r 2 r ) /N 5 r /N 2 r 5 r /N 2 r .O O Oc i c c i c c i c ca a
a51 a51 i51

The above two relations can be immediately rearranged
to yield

N

2 2 2 2 2r 5 N(s 1 R ) 5 N (s 1 r ).O i c c c
i51

This implies

s2 1 R2 5 p( 1 ),2 2s rc c

from which (22) follows.

APPENDIX B

Computation of the Length Scale L

In this appendix we discuss in more detail the com-
putation and interpretation of L2 defined in (20). It is
helpful in developing an interpretation of L to assume
that the footprints are sufficiently densely and evenly
distributed that they can be treated as if arranged in a
regular rectangular array completely filling the area A
5 L2. Each footprint occupies a box of side d 5 L/N.
The number of footprints is then N0 5 N 2. The quantity
L so defined in general depends both on the area size
L and the footprint size d. For instance, if the area is
small enough to be covered by a single footprint, then
obviously L 5 L. More generally, however, L is closely
related to the scale over which the data are spatially
correlated, as we now show.

Using the identity

N N N

f (i 2 j) 5 (N 2 |m|) f (m) (B1)O O O
i51 j51 m52N

for a function f(i) defined at each integer i, |i| # N 2 1,
we can write (20) as
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N NA
2L 5 r(|x 2 x |)O O ij kl4N i,j51 k,l51

N NA
5 (N 2 |m |)(N 2 |m |)r(|m|d).O O 1 24N m 52N m 52N1 2

(B2)

This equation formally transforms the sum over the cor-
relation between all pairs of footprints in the N 3 N
array into a weighted sum of the correlation between each
footprint in an equally spaced (2N 1 1) 3 (2N 1 1)
array and a footprint located at the center of the array.
If r(|m|d) is sufficiently smooth, (B2) can be treated as
a discrete numerical approximation to a continuous dou-
ble integral. The approximation becomes exact in the
limit d → 0 (‘‘point footprint’’). Introducing the sepa-
ration vector s 5 md, and using the relations A 5 L2

and L 5 Nd we can express L2 in this limit as an area
integral over a 2L 3 2L square:

L L1
2L ø ds ds (L 2 |s |)(L 2 |s |)r(|s|).E 1 E 2 1 22L

2L 2L

By going to polar coordinates this can be reduced further
to the one-dimensional integral

Ï2L

2L 5 4 sg(s)r(s) ds, (B3)E
0

with the angular integral replaced by the areal weighting
factor

w (s)1 s s
g(s) 5 dw 1 2 cosw 1 2 sinw , (B4)E 1 21 2L L

w (s)0

where

0, s # L;
w (s) 50 215cos (L /s), s . L;

and

w (s) 5 p /2 2 w (s).1 0

Carrying out the integrations in (B4) we get

2 2p /2 2 2s/L 1 s /(2L ), 0 # s # L;
g(s) 5

21 2 2 1/2 2 25p /2 2 1 2 2 cos (L /s) 1 2(s /L 2 1) 2 s /(2L ), L , s # Ï2L.

When the footprints are small compared with spatial
correlation lengths and the grid-box size A is large, one
can easily show that

L2 → 2 ,2pLint (B5)

where

`

2L 5 sr(s) ds. (B6)int E
0

The quantity Lint is an ‘‘integral correlation length,’’
which is just the usual correlation length, the (1/e)-fold-
ing distance, if the correlation r(s) decreases exponen-
tially.

Although the continuous integral representation of L2

given by (B3) in the limit of infinite resolution is con-
ceptually illuminating, estimation of the integral from
the finite-resolution data in practice takes one back to
a discrete sum. We estimated L2 for each 2.58 grid-box
area as follows: The footprint pairs are binned according
to their mutual distance of separation in units of d/2,
where d is the nominal diameter of an SSM/I footprint
(about 28 km). For all the pairs belonging to the kth
separation bin (k 5 0, 1, 2, . . . , kmax 5 [2 2L/d], whereÏ
[x] denotes the integer part of x) we compute the cor-
relation coefficient rk, the mean separation sk and the
angular factor gk 5 g(kd/2). In terms of these quantities,

a reasonably accurate estimate of L2 is given by the
Riemann-sum approximation

kmax 1
4 (r s g 1 r s g )(s 2 s ).O k11 k11 k11 k k k k11 k2k50

This method of proceeding does not require the as-
sumption that the footprints be uniformly distributed in
the area A that was used to develop the interpretation
(B3) for L. We have tested the accuracy of the approx-
imation by plotting s2L2/A against . Our results are2s A

closely fitted by a straight line with unit slope.
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