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ABSTRACT

Variability in the global distribution of precipitation is recognized as a key element in assessing the impact
of climate change for life on earth. The response of precipitation to climate forcings is, however, poorly understood
because of discrepancies in the magnitude and sign of climatic trends in satellite-based rainfall estimates.
Quantifying and ultimately removing these biases is critical for studying the response of the hydrologic cycle
to climate change. In addition, estimates of random errors owing to variability in algorithm assumptions on
local spatial and temporal scales are critical for establishing how strongly their products should be weighted in
data assimilation or model validation applications and for assigning a level of confidence to climate trends
diagnosed from the data.

This paper explores the potential for refining assumed drop size distributions (DSDs) in global radar rainfall
algorithms by establishing a link between satellite observables and information gleaned from regional validation
experiments where polarimetric radar, Doppler radar, and disdrometer measurements can be used to infer raindrop
size distributions. By virtue of the limited information available in the satellite retrieval framework, the current
method deviates from approaches adopted in the ground-based radar community that attempt to relate micro-
physical processes and resultant DSDs to local meteorological conditions. Instead, the technique exploits the
fact that different microphysical pathways for rainfall production are likely to lead to differences in both the
DSD of the resulting raindrops and the three-dimensional structure of associated radar reflectivity profiles.
Objective rain-type classification based on the complete three-dimensional structure of observed reflectivity
profiles is found to partially mitigate random and systematic errors in DSDs implied by differential reflectivity
measurements. In particular, it is shown that vertical and horizontal reflectivity structure obtained from spaceborne
radar can be used to reproduce significant differences in Zdr between the easterly and westerly climate regimes
observed in the Tropical Rainfall Measuring Mission Large-scale Biosphere–Atmosphere (TRMM-LBA) field
experiment as well as the even larger differences between Amazonian rainfall and that observed in eastern
Colorado. As such, the technique offers a potential methodology for placing locally observed DSD information
into a global framework.

1. Introduction

In their most recent assessment, the Intergovernmen-
tal Panel on Climate Change (IPCC) identifies vari-
ability in the global distribution of precipitation as a
key component in understanding the impact of climate
change on the environment (McCarthy et al. 2001). As
yet, however, the response of precipitation to climate
forcings on annual and interannual time scales remains
uncertain because of discrepancies in the magnitude and
even the sign of rainfall variability on both global and
regional scales in different satellite-based estimates such
as the Global Precipitation Climatology Project (GPCP)
(Huffman et al. 1997), Climate Prediction Center (CPC)
Merged Analysis of Precipitation (CMAP) (Xie and Ar-
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kin 1996, 1997), and Tropical Rainfall Measuring Mis-
sion (TRMM) Precipitation Radar (PR) (Iguchi et al.
2000) products. Recent studies suggest that these cli-
mate-regime-dependent biases originate from system-
atic changes in nonobservable parameters that must be
assumed to solve the fundamentally underconstrained
problem of retrieving rainfall from satellite observations
(Berg et al. 2002). Regional and time-dependent vari-
ations in the vertical distribution of liquid and ice, the
dielectric properties of mixed-phase hydrometeors, and
the horizontal inhomogeneity of rainfall within the sat-
ellite field of view, for example, have all been identified
as potential sources of systematic error in rainfall es-
timates from the TRMM Microwave Imager (TMI)
(Nesbitt et al. 2000; Poyner 2002; Battaglia et al. 2003;
Kummerow et al. 2004). Similarly, rainfall estimates
from single-frequency radars without polarization ca-
pability, such as the TRMM PR, suffer from uncertain-
ties associated with nonuniform beam filling and errors
in assumed Z–R relationships because of temporal and
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spatial variations in raindrop drop size distributions
(DSDs) (Iguchi et al. 2000; Amitai 2000; Zhang et al.
2001; Bringi and Chandrasekar 2001; Uijlenhoet et al.
2003). For example, Robertson et al. (2003) find that
while interannual variability in path-integrated attenu-
ation (PIA) from the PR closely matches the TMI rain-
fall time series, discrepancies exist between the ob-
served PIA and the PR rainfall estimates themselves
that are indicative of time-dependent biases in the as-
sumed DSD. Quantifying and ultimately removing these
uncertainties is critical for studying the response of the
hydrologic cycle to climate change, validating model
simulations of climate variability, and for data assimi-
lation applications.

This paper seeks to address the problem of estimating
and reducing systematic and random errors in satellite-
based retrieval algorithms. Ultimately it is hoped that
the technique outlined here will be applicable to a wide
range of atmospheric remote sensing applications but,
to fix ideas, we focus on the problem of retrieving rain-
fall globally from single-parameter (i.e., single-fre-
quency and nonpolarimetric) radars, such as the TRMM
PR. These algorithms seek to relate the fraction of an
emitted pulse of radiation that is backscattered by a
volume of the atmosphere to the amount of rainfall that
falls from that volume. This problem is complicated by
the fact that the backscattered fraction, known as the
reflectivity, depends on both the concentration of rain-
drops within the volume and their size. Since it is im-
possible to simultaneously determine both properties
from a single reflectivity measurement, it is necessary
to specify raindrop size spectra prior to estimating rain-
fall, and these algorithms incur both random and sys-
tematic errors as a result.

The problems associated with applying climatological
mean relationships between reflectivity and rainfall
(known as Z–R relationships) are well understood by
both the satellite and ground-based radar communities
(e.g., Sempere-Torres et al. 2000; Lee 1990; Uijlenhoet
et al. 2003). The ground-based radar community has
approached this problem from the perspective of better
understanding relationships between microphysical pro-
cesses, raindrop DSDs, and the associated meteorolog-
ical conditions in which they form (e.g., Sempere-Torres
et al. 1999; Carey et al. 2001; Cifelli et al. 2002; Pe-
tersen et al. 2002; and Rickenbach et al. 2002). These
studies make use of raindrop size distribution measure-
ments from Joss and Waldvogel (1967), optical, and
acoustic disdrometers, and/or multiparameter radars, fall
speed observations from Doppler radars, and meteo-
rological variables such as wind speed, aerosol content,
etc. that can be used to identify the dominant micro-
physical processes at work and connect them to the
properties of the climate regimes in which they occur.

Unfortunately, satellite-based algorithms do not have
access to the detailed microphysical or regime infor-
mation being used in ground-based studies. As such they
have been forced to make general assumptions regarding

DSD, which, in turn, cause algorithms to over- and un-
derestimate regional rainfall. Furthermore, attempts to
validate satellite rainfall estimates through comparisons
between ground-based and satellite-based radars often
demonstrate little more than the fact that locally derived
DSDs differ from those assumed globally, providing
limited insight into the accuracy of the latter on global
scales. Regrettably, it is neither affordable nor practical
to deploy disdrometers, rain gauges, or ground-based
radars on the global scale to measure time–space mean
DSDs or their variance. Since neither explicit micro-
physics nor DSD information can be gleaned from sat-
ellite observations alone, a different approach is re-
quired to identify microphysical processes and resulting
DSDs using only radar reflectivity fields. The challenge
facing global algorithm developers is, then, to develop
a framework for importing information gleaned from
local field experiments to constrain the global problem.

Because of its global nature, the approach developed
here steers away from the observations related to the
meteorological conditions and microphysical processes
surrounding rainfall development. It seeks instead to
relate DSD information obtained from ground obser-
vations to the vertical and horizontal structure of re-
flectivity measurements that can be observed from a
spaceborne radar. The approach is based on the hy-
pothesis that distinct microphysical processes give rise
to distinguishable raindrop size distributions and, at the
same time, manifest themselves as differences in the
vertical and horizontal structure of observed radar re-
flectivity profiles. This idea is not completely new: re-
flectivity–rainfall relationships have been subjectively
separated according to whether a pixel exhibited the
characteristics of convective or stratiform rainfall for
many years (see Battan 1973, and references therein).
Rosenfeld et al. (1995) went a step further and used a
set of parameters describing the three-dimensional struc-
ture of the reflectivity field to objectively classify rain-
fall observed at Darwin, Australia, into physically
meaningful regimes. Recently, Boccippio (2003) used
a cluster analysis to objectively classify rainfall on a
global scale using PR data. We seek to adapt the concept
outlined in these two papers to the problem of using
observed radar reflectivity structure to objectively de-
velop an ensemble of rainfall classes with the goal of
assigning an appropriate set of DSD parameters to each
using size distribution information from disdrometers or
polarimetric radars where available. Since the relation-
ship between a general set of microphysical processes
and the resulting DSD is far from unique, we will further
aim to determine the DSD variability within each rain-
fall class for later use as a measure of uncertainty.

To illustrate the general idea, consider the pathways
for the formation of precipitation in two hypothetical
air masses summarized in Fig. 1. The left-hand side
applies to a cold-based cloud (T , 08) perhaps residing
in an aerosol-rich continental air mass while the right-
hand side governs a warm-based cloud (T . 08) in a
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FIG. 1. Selected pathways for precipitation formation from (left) cold-based continental clouds
and (right) warm-based maritime clouds (adapted from Cotton and Anthes 1989). Two distinct
pathways discussed in the text are labeled (1) and (2) and highlighted in bold.

cleaner air mass. For the purposes of illustration, two
distinct pathways leading to liquid precipitation have
been highlighted in bold. The first corresponds to de-
velopment of precipitation through cold cloud processes
starting with an initial distribution of ice crystals that
grow through riming and aggregation into snowflakes
and ultimately melt at warmer temperatures near the
surface, giving rise to liquid precipitation. The reflec-
tivity profile resulting from this type of rain event is
characterized by relatively low but finite reflectivities
from large ice particles at upper levels, a layer of intense
reflectivity from large melting snow flakes near the melt-
ing level [known as the radar bright band (BB)], and
moderate reflectivities below the BB. The slope of the
reflectivity profile below the BB is determined by the
relative humidity at lower levels of the atmosphere. Pro-
vided lower levels are at or near saturation with respect
to liquid, the reflectivity profile will be uniform in height
down to the surface. Subsaturation, on the other hand,
results in evaporation at lower levels and a substantial
decrease in reflectivity with decreasing altitude. Rainfall
emerging at the surface from this pathway is charac-
terized by larger than average raindrops relative to other
pathways. Furthermore, since smaller drops evaporate
more readily than larger ones, rainfall that falls through
a subsaturated environment at lower levels will, on av-
erage, exhibit still larger droplets.

Through the second pathway, precipitation develops

in the absence of any ice-phase microphysical processes.
In a saturated environment, liquid cloud droplets form
through condensation onto relatively few aerosol par-
ticles. The absence of additional nuclei allows a number
of these droplets to grow to larger sizes, resulting in a
broad spectrum of cloud droplet sizes required for vig-
orous collision and coalescence to occur. Drizzle soon
forms as a result, and continued coalescence eventually
leads to liquid precipitation. Since this precipitation,
commonly referred to as ‘‘warm rain,’’ develops entirely
at temperatures at or above freezing, it results in a shal-
low reflectivity profile. Further, the lack of large melting
ice particles at the melting level suppresses the radar
BB common in many mixed-phase precipitation events.
By similar arguments, the fact that precipitation forms
exclusively through collision and coalescence of liquid
cloud droplets results in smaller raindrops, on average,
than those resulting from the melting of large snow-
flakes. Observations from a ground-based radar in a
region characterized by both types of precipitation may
be able to explicitly distinguish these two pathways
based on ancillary information regarding the large-scale
conditions in the area provided a focused field experi-
ment had, at some time, been conducted to explore the
origins of each in terms of the properties of the local
environment. However, since the relationships between
DSD and local meteorology vary greatly from place to
place and over time, focused field experiments cannot
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be used to constrain DSDs in global algorithms, re-
quiring a new approach to the problem. Fortunately, in
both examples there appears to be a connection between
the structure of the expected reflectivity profile and the
size distribution of the resulting raindrops.

While complicated in its own right, Fig. 1 represents
only a limited number of idealized microphysical pro-
cesses governing the exchange of water between vapor,
liquid, and ice phases. The cycling of water between
these reservoirs in the earth’s atmosphere is, in reality,
extremely sensitive to the thermodynamic, chemical,
and dynamical properties of the surrounding environ-
ment, leading to a myriad of complex pathways for pre-
cipitation development. Even so, the simplified exam-
ples presented above suggest that distinct combinations
of microphysical processes will give rise to different
vertical and horizontal radar reflectivity profiles, which
we postulate should provide a means of constraining
DSDs. It is our contention that while rain systems vary
greatly from region to region and in time, the funda-
mental connection between reflectivity structure and
DSD established by the microphysical mechanisms un-
derlying rainfall development is more or less universal.
Thus reflectivity structures may provide a link between
satellite observables and variables measured by ground-
based polarimetric radars that will allow DSD param-
eters consistent with the local environment to be as-
signed to single-frequency reflectivity profiles.

To test this hypothesis, polarimetric radar observa-
tions from the joint TRMM Large-scale Biosphere At-
mosphere (LBA) field experiment in Rondonia, Brazil,
and the Colorado State University–University of Chi-
cago and University of Illinois, Champaign (CSU–
CHILL) radar facility in northeastern Colorado are ex-
amined to assess the extent to which similar rainfall
structures, or rain-type classes,1 found in both regions
exhibit more or less universal DSD properties. It is our
goal to explore the potential for projecting DSD infor-
mation obtained from ground-based observations onto
the reflectivity structure observed by the TRMM PR.
Furthermore, if care is taken to construct rainfall re-
trieval algorithms with complete end-to-end error mod-
els, we expect that the variability of DSD parameters
within any given rain-type class and systematic differ-
ences in these parameters arising from climate regime

1 Before proceeding a brief explanation is needed regarding the
desired interpretation of the term ‘‘rain type’’ in the context of this
study. In many applications it is natural to assign a physical inter-
pretation to each rain type, perhaps in terms of the specific micro-
physical processes, kinematic properties, or thermodynamic charac-
teristics governing its occurrence. The goals of this study are, how-
ever, rooted in the realm of algorithm development and validation
and, as a result, warrant a more mechanical definition of each rain
type based entirely on the measurements used to define it. It will be
shown that thousands of rain types must be introduced in order to
make statistically significant progress toward describing DSD, and,
while some microphysics-based interpretation will be offered for dif-
ferences between some example rain types, it is impractical to seek
unique descriptions for all that are defined.

dependencies can be translated into an uncertainty in
retrieved rainfall rate.

2. Identifying rain types

Conventional approaches to rain-type classification
are generally based on a subjective separation of rainfall
into two types: 1) convective precipitation characterized
by strong updrafts, significant horizontal variability, and
little or no evidence of a BB, and 2) stratiform precip-
itation characterized by horizontally homogeneous rain-
fall in regions of weak and uniform ascent and a well-
defined BB at the freezing level. This has been the pre-
vailing approach for nearly half a century and is par-
ticularly useful for estimating latent heating in
precipitating systems since, to first order, stratiform and
convective rainfall exhibit distinct vertical distributions
of latent heating. The DSD, critical for quantitative ra-
dar-based rainfall retrievals, however, varies widely
within the convective and stratiform categories requir-
ing additional information to further constrain such al-
gorithms. In this paper we explore the possibility of
extending rain-type classification beyond traditional
convective/stratiform separation to objectively define a
set of rain types that constrain DSD and provide a frame-
work for determining its mean and variability from aux-
iliary ground validation data. This involves determining
the set of observables that provide the most information
regarding DSD and the resolution to which they must
be binned to define rain types that optimally constrain
DSD parameters in a retrieval algorithm. Rather than
approaching the problem with the hope of presenting
the final word on either of these considerations, the goal
of this section is to develop a procedure for assessing
the best set of classification variables from an arbitrary
list and to provide a set of criteria for establishing the
binning resolution needed for using them in a rain-type
classification scheme.

a. Data and choice of variables

Eleven variables are chosen that are related to the
vertical and horizontal structure of an observed reflec-
tivity field: surface reflectivity, vertical gradients be-
tween 0.5 and 2 km, 2 and 4 km, 4 and 6 km, and 6
and 8 km, the height of the maximum reflectivity, its
ratio to that at the surface, the ratio of the integrated
reflectivity above the freezing level to that at the surface,
the highest altitude with a radar echo above 20 dBZ,
and the mean and maximum of the horizontal gradient
in surface reflectivity between each pixel and its eight
nearest neighbors. These variables are chosen because
they represent a number of elements related to the mi-
crophysical processes depicted in Fig. 1, notably, the
intensity of rainfall at the surface, the amount of evap-
oration at lower levels, the ice content aloft, and the
strength of the bright band. Since it is important to keep
the number of variables and resulting classes as low as
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possible to maintain conceptual simplicity and to pro-
vide a tractable algorithm from a computational stand-
point, the first step in defining the classification grid is
to isolate the subset of variables that carry independent
information. To this end, correlations between all var-
iables are examined using S-band (10.7 cm) polarimetric
radar data collected using the National Center for At-
mospheric Research (NCAR) S-band Dual Polarization
Doppler Radar (S-Pol) that was deployed during the
TRMM-LBA field experiment that took place in the
Amazon wet season from 10 January to 28 February
1999. (For a detailed overview of the TRMM-LBA ex-
periment, the reader is referred to the CSU TRMM-LBA
Web site at http://olympic.atmos.colostate.edu/
lba.trmm.) S-Pol collected observations of reflectivity,
differential reflectivity, linear depolarization ratio, and
total differential phase, all of which have been processed
to remove the effects of ground clutter, anomalous prop-
agation, second-trip echoes, partial beam blocking, at-
tenuation by precipitation, calibration biases, and clear-
air echoes. Details regarding the processing methodol-
ogy and validation of this dataset can be found in Carey
et al. (2000). Initially the datasets produced by Carey
et al. (2000) are gridded to 2-km horizontal and 0.5-km
vertical resolution assuming a 1-km radius of influence
for the interpolation in each direction. These data have
subsequently been gridded to 4-km resolution in the
horizontal to be consistent with the spatial resolution of
the TRMM PR. This also alleviates the more practical
issue that the quality of the vertical profiles inferred
from radar volume scans decreases with range from the
radar because of the decrease in density of observations
and increasing sample volume with increasing range
(Zawadzki and Bellon 2003). For the same reason, the
analysis focuses on data within a range of 100 km from
the radar. The resulting dataset consists of 6074 scans
taken approximately every 10 min during the experi-
ment, providing more than 365 000 raining pixels with
suitable data with which to develop the classification.

Finally, the data have been subsetted into the easterly
and westerly meteorological regimes identified by Rick-
enbach et al. (2002) based on observations of the large-
scale dynamics in the region (see also Carey et al. 2001
and Petersen et al. 2002). The easterly regime is char-
acterized by significantly larger CAPE, drier lower-and
middle-tropospheric humidity, a stronger and deeper
wind sheer layer, and a factor of 2 higher concentration
of cloud condensation nuclei (CCN) than in the westerly
regime (Williams et al. 2002). Carey et al. (2001) further
note that raindrops in the westerly regime are generally
smaller than those found in the easterly regime for a
given reflectivity bin. This provides an important test
for the rain-type classification system. While local radar
operators can generally identify the prevailing climate
regime using the wind direction, satellites cannot rely
on such knowledge on global scales. As a result, the
classification approach must be capable of detecting this
DSD difference independent of ancillary data.

Analysis of the correlations between variables com-
puted from the complete LBA dataset indicates that the
height of the maximum observed reflectivity signal, the
integrated reflectivity above the freezing level, and the
maximum horizontal gradient are all sufficiently highly
correlated with other variables as to make them redun-
dant from the classification standpoint. These variables
are therefore eliminated, leaving the eight illustrated in
Fig. 2 to be used in developing the classification. It is
worth noting that a more rigorous empirical orthogonal
function (EOF) analysis indicated that more than 95%
of the variance in the LBA dataset could be explained
by the first six EOFs. In an operational implementation
of the algorithm, this property may be used to reduce
the dimensionality of the classification grid, potentially
reducing computation time. This is, however, left as an
exercise for the future, and the original variables are
preserved for the present study to facilitate interpreta-
tion of the results.

Since the primary objective of rain-type classification
in this paper is to reduce variability in DSD, the vari-
ability in differential reflectivity, Zdr, in each rain-type
class is adopted to assess its performance relative to the
unclassified dataset. In rainfall, the differential reflec-
tivity, defined as the ratio of the scattering intensities
at horizontal and vertical polarization,

2|S |HHZ 5 10 log , (1)dr 10 2|S |VV

provides a measure of the reflectivity-weighted axis ra-
tio of the raindrops in the sample volume (Jameson
1983). As a result, Zdr is related to DSD since a raindrop
becomes increasingly oblate the larger it gets, owing to
hydrodynamic forces. The numerical model for the axis
ratio, r 5 b/a, of a raindrop proposed by Beard and
Chuang (1987), for example, can be reasonably ap-
proximated by

2 3 4r 5 a 1 bD 1 cD 1 dD 1 eD , (2)

where a 5 1.0048, b 5 5.7 3 1024, c 5 22.628 3
1022, d 5 3.682 3 1023, and e 5 21.677 3 1024 for
raindrops with diameters, D, between 0.5 and 7 mm.
The larger the droplet, the more oblate it becomes and
the larger the observed Zdr. So, in principle, one can
infer drop size from Zdr. Bringi and Chandrasekar
(2001), for example, couple the Beard and Chuang
(1987) axis ratio parameterization with an assumed
gamma DSD to arrive at a fit for the mass-weighted
mean drop diameter of the form Dm 5 1.619 .0.485Zdr

It is important to note that there are a variety of un-
certainties associated with inverting Zdr observations to
obtain drop size. First, for a polydispersed DSD, Zdr is
biased toward the largest drops since reflectivity is pro-
portional to drop diameter to the sixth power in the
Rayleigh–Gans limit. Thus Zdr based retrievals of drop
size are particularly sensitive to the assumed shape of
the DSD since they depend strongly on the large particle
tail of the distribution. Furthermore, canting and drop
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FIG. 2. Variables describing the three-dimensional structure of an observed reflectivity field
used for classifying rainfall.

oscillations can lead to uncertainties in relating the mea-
sured Zdr to axis ratio (Bringi and Chandrasekar 2001).
To avoid these issues influencing the results, the re-
mainder of the analysis in the present paper is conducted
in Zdr space with the understanding that the results
should, in principle, apply to DSD itself. Even in Zdr

space, however, the analysis is susceptible to random
and systematic errors in the Zdr measurements them-
selves. The bias in the Zdr estimates employed in the
present study is expected to be on the order of 0.1 dB
(Carey et al. 2000), while random noise is likely ;0.1–
0.3 dB. As a result, some random variability in Zdr is
likely to remain even if the data were perfectly classi-
fied. This random noise should, however, be signifi-
cantly reduced when many pixels are averaged together,
a fact that provides the motivation for restricting the
subsequent analyses to classes that are sampled at least
20 times.

If Zdr is considered a proxy for drop size, then it is
logical to seek a bin size for the eight remaining vari-
ables that provides the greatest reduction in its vari-
ability, s , over all pixels that fall into each rain type.Zdr

In addition, it is desirable to minimize differences in
the mean Zdr within any given rain type when it is ob-
served in distinct climate regimes (e.g., different loca-
tions on the globe or during different seasons at the
same location). Finally, it is desirable to represent as
much rainfall as possible with as few rain types as pos-
sible.

b. The method of untrained classification

To keep the analysis objectively based, the dataset is
processed using the technique of untrained classifica-
tion. The first pixel in the dataset is designated as the
first rain-type class. The vertical and horizontal structure
of the second pixel is then compared with the properties
of the first and is considered to belong to the same rain-
type class if the root-mean-square (rms) difference be-
tween its structure properties and those of the first is
less than some prescribed threshold, that is,

M

pixel class 2(x 2 x )O i i
i51Î # x, (3)

2M

where the xi represent standardized2 vertical and hori-
zontal structure variables, and x denotes the chosen
threshold. If Eq. (3) is not satisfied, it defines a new
rain-type class. The process is then repeated for all sub-
sequent pixels in the dataset. Each is compared, in turn,
with the properties of all rain-type classes defined before
it. If Eq. (3) is satisfied for a particular class, the pixel
is assigned to it and the processing moves on to the
next pixel. Any pixel that fails to fall into any of the
previously established classes defines a new one. To

2 A variable is standardized by subtracting its mean and dividing
by its standard deviation over the LBA dataset, xi 5 (y2 2 )/s2.y2

If this is not done, differences in units result in some variables being
weighted more than others in the rms difference.
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FIG. 3. (a) Number of classes defined and fraction of rainfall classified through unsupervised
classification of all westerly regime pixels with near-surface reflectivity of 36 6 2 dBZ and at a
threshold of 0.4. (b) As in (a), but for easterly regime pixels classified in terms of predefined
classes from the westerly regime.

avoid manipulating enormous datasets that incur pro-
hibitively long computation times, the data are first strat-
ified by Zsfc into four dBZ bins since drop size generally
increases with increasing reflectivity. All profiles within
each of these subsets are then sorted into classes ac-
cording to the remaining seven classification variables
using Eq. (3).

Figure 3a presents the number of rain types defined
as a function of the number of pixels searched in the
classification of all westerly regime pixels with near-
surface reflectivities, Zsfc, between 34 and 38 dBZ at a

threshold of x 5 0.4. The shading beneath the curve
represents the fraction of this rainfall subset that is ex-
plained by rain types in the classes defined up to that
point. In this case, ;1350 distinct rain types are iden-
tified from the 9000 pixels examined, but more than
80% of the rainfall in the dataset can be attributed to
the rain types defined over the first quarter of the pixels
or, equivalently, the first 600 classes. While new rainfall
events invariably identify new rain types, a majority of
the reflectivity structures observed in the last three-quar-
ters of the dataset are defined by prior rain events. This
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FIG. 4. (a) Trade-offs between the fraction of rainfall classified [solid line in (a) and (b)] and
the random error in Zdr and (b) reduction in systematic bias between easterly and westerly climate
regimes. (c) Resulting uncertainty in assigned Zdr from Eq. (5). Results apply to all pixels in the
LBA dataset with near-surface reflectivity of 36 6 2 dBZ.

fact is reinforced by Fig. 3b, which presents the clas-
sification of all easterly regime pixels with Zsfc between
34 and 38 dBZ in terms of the rain types defined by the
westerly regime. All pixels to the left of the vertical
dashed line correspond to easterly regime pixels that
were assigned rain types defined in the westerly regime.
Despite the known differences in the character of the
precipitation between the two regimes, less than 25%
of the total rainfall in the easterly subset defines new
rain types, and fewer than 850 new classes are defined
from the more than 12 500 pixels examined.

c. Estimating an optimal threshold

Untrained classification as defined above provides a
useful tool for objectively grouping pixels with similar
properties, but the results depend critically on the ap-
parently arbitrary choice of the threshold, x. It can be
argued, for example, that the case shown in Fig. 3 de-
fines an unreasonably large number of rain types, and
it is difficult to defined the choice of x 5 0.4 in the
absence of additional information. Returning to the LBA
dataset, however, and recalling the purpose of devel-
oping the rain-type classification in the first place, an
optimal threshold can be determined. It is reasonable to
require that the optimal threshold be that which simul-
taneously maximizes the amount of rainfall falling into
each class and minimizes the variability of Zdr within
any given class. More importantly, since the classifi-
cation is designed to constrain DSD in global algo-
rithms, a threshold must be chosen that minimizes the

differences in the mean Zdr of classes that are found in
both the easterly and westerly regimes. The solid curve
in Figs. 4a and 4b indicates the fraction of easterly
regime rainfall that is assigned to rain types defined
using westerly regime data as a function of threshold,
x. Only pixels with surface reflectivities in the range
34–38 dBZ are presented in the figure, but similar results
are obtained for other reflectivity ranges. The lower the
threshold the more strictly a pixel’s reflectivity structure
has to match that of the class to which it is being com-
pared. As a result, the fraction of easterly regime rainfall
that fits into westerly rain types increases with increas-
ing threshold. The dashed curve in Fig. 4a presents the
standard deviation of Zdr for all pixels in each class
averaged over all classes in the reflectivity range. In
Fig. 4b it represents the average reduction in the Zdr

difference between all classes found in both the regimes,
defined as

|(Z 2 Z ) 2 (Z 2 Z ) |dr,E dr,W all dr,E dr,W classD 5 100 * ,dZdr | (Z 2 Z ) |dr,E dr,Wall

(4)

where the subscripts E and W denote easterly and west-
erly regimes, respectively. The subscript all refers to
the mean properties of these regimes before classifica-
tion, while the subscript class corresponds to an indi-
vidual class found in the corresponding regime. A value
of D 5 0 corresponds to the limit where classificationdZdr

provides no information to reduce the Zdr bias between
regimes, while a value of 100 indicates that all of the
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TABLE 1. Description of the final classification grid. The maxima and minima are representative of S-Pol data from TRMM-LBA but may
need to be modified when applied to an alternate dataset.

Variable Min Max Bin size No. of bins

Zsfc (dBZ)
Slope 0–2 km (dBZ km21)
Slope 2–4 km (dBZ km21)
Slope 4–6 km (dBZ km21)
Slope 6–8 km (dBZ km21)
Zmax/Zsfc (dBZ/dBZ)
20 dBZ height (km)
Mean horizontal gradient (dBZ km21)

4.0
28.0
27.0

215.0
215.0

1.0
2.0
0.0

56.0
8.0
9.0
5.0
6.0
1.5

14.0
6.0

4.0
1.0
2.0
2.5
3.0
0.1
1.5
1.0

13
16

8
8
7
5
8
6

bias is removed by classification. Clearly, rain types
defined at tighter thresholds result in better constraints
on Zdr both through the reduction of its variability within
any given class and improved uniformity of its mean
value between the different climate regimes.

Now, returning to the global rainfall retrieval prob-
lem, all observed pixels that fall into a class whose
properties have been defined through ground-based ob-
servations should be assigned a Z–R relationship based
on the mean Zdr or, equivalently, the mean DSD, for
that class with the appropriate reduced uncertainty. All
others can, at best, be assigned a mean Z–R relationship
derived from the dataset as a whole with the associated
large uncertainty; in other words, the algorithm must
resort back to the climatological mean Z–R relation-
ship. Now suppose the easterly regime pixels represent
a set of satellite observations to be classified and as-
signed properties based on the westerly regime data.
For any given threshold, a rough estimate of the av-
erage uncertainty in Zdr assigned to all easterly regime
rainfall is

e 5 fs 1 (1 2 f )s ,Z easterlydr
(5)

where f is the fraction of easterly regime rainfall that
falls into westerly regime rain types, s is the meanZdr

standard deviation in Zdr for all classified easterly pixels,
and seasterly is the standard deviation in Zdr over all pixels
in the easterly regime. Figure 4c presents as a functione
of threshold for all easterly pixels with surface reflec-
tivities in the range 34–38 dBZ. The minimum of this
curve corresponds to the lowest possible average un-
certainty in easterly regime pixels when classified ac-
cording to the rain types identified in the westerly re-
gime dataset. This confirms that 0.4 is the optimal
threshold for rain-type classification based on the eight
variables described above. Analysis of other surface re-
flectivity ranges yields similar results, indicating that
the optimum threshold should lie between 0.25 and 0.5.

It is impractical to perform the full untrained clas-
sification procedure on every new pixel the satellite en-
counters, as it requires comparison to thousands of ex-
isting classes. Instead, the optimal threshold is used to
determine an appropriate set of equally spaced bins in
the eight classification variables. Assuming a threshold
of 0.4, the standard deviation of each of the eight clas-
sification variables averaged over all rain-type classes

defines the dimensions of an evenly spaced eight-di-
mensional grid onto which satellite observations can be
mapped. In other words, the binning resolution in the
jth variable is given by

N

(s )O X ij
i51D 5 , (6)j N

where s is the standard deviation of the variable XjXj

over all pixels assigned to a particular class, and i runs
over all rain-type classes identified in the dataset. Table
1 provides the ranges and resolutions for each variable
in defining the final classification grid. These dimen-
sions result in more than 22 million possible rain-type
classes, but it is important to note that many of these
classes constitute unphysical combinations of variables
that are never likely to be observed. Fewer classes re-
stricts our ability to constrain the variability of polari-
metric parameters within each rain type, while more
classes reduces the number of times each raintype is
sampled in validation experiments, resulting in poor sta-
tistics with which to determine appropriate mean po-
larimetric parameters and their standard deviations.

3. Properties of rain-type classes

a. Easterly and westerly climate regimes in TRMM-
LBA

To test the hypothesis that rain-type classification may
provide a useful tool to constrain DSD in satellite-based
retrieval algorithms, it is important to determine the
extent to which it can distinguish distinct climate re-
gimes in a dataset. By virtue of its two meteorological
regimes and the known differences in DSD they pro-
duce, the TRMM-LBA dataset is a particularly good
example of a case in which systematic biases in rainfall
estimates would be incurred if a climatological mean
Z–R relationship were applied uniformly across the da-
taset. Figure 5 illustrates the variability in Zdr for various
subsets of the TRMM-LBA dataset, each based on using
different information to classify the data. For purposes
of illustration, only pixels with near-surface reflectivi-
ties in the range 36–40 dBZ are presented. Figure 5a
represents the scenario in which no rain-type classifi-
cation is used, allowing the full range of DSD variability
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FIG. 5. Different methods for classifying the rainfall observed in the TRMM-LBA field ex-
periment. Distributions of differential reflectivity Zdr for (a) all raining pixels viewed by S-Pol
(12 105 samples), (b) all raining pixels viewed by S-Pol but separated into convective and strat-
iform rainfall (11 831 and 274 samples, respectively), (c) all pixels determined to be convective
in (b) further separated into easterly and westerly regimes as defined by Rickenbach et al. (2002)
(5319 and 644 samples, respectively), and (d) two convective rainfall classes (represented by
light and dark curves) observed in both the easterly (solid) and westerly (dashed) regimes in
TRMM-LBA (.20 samples each). In all cases, statistics are restricted to profiles with near-surface
reflectivities of 38 6 2 dBZ.

indicated by the broad probability density function
(PDF) of Zdr.

Most current algorithms adopt a reflectivity-based
classification into convective and stratiform rainfall cat-
egories that account for the fundamental differences in
their microphysical, thermodynamic, and kinematic
properties. The Steiner et al. (1995) technique, for ex-
ample, examines the intensity and spatial uniformity of
the low-level reflectivity field to identify convective
(high intensity, nonuniform) and stratiform (low inten-
sity, uniform) regions. This approach has been adapted
and applied to the TRMM-LBA dataset by Carey et al.
(2000), and the resulting PDFs of Zdr for convective and
stratiform pixels are illustrated in Fig. 5b. Clearly, this
partitioning identifies the fact that, for a given rainfall
intensity, convective raindrops are, on average, smaller
than those found in stratiform rainfall, thereby reducing
biases introduced by using a uniform Z–R relationship
for all pixels. As Fig. 5b shows, however, the variability
of DSDs within the convective and stratiform rain types
is almost as large as with no classification at all, leading
to large uncertainties in retrieved rainfall rates.

Perhaps more importantly, this wide range of DSDs

opens the door to systematic errors due to climate re-
gime biases as can be seen in Fig. 5c, where the con-
vective rainfall is further separated into the easterly and
westerly wind regimes observed in TRMM-LBA. This
case demonstrates the distinction between the ground-
based and satellite-based approaches to constraining
DSD in radar rainfall algorithms. Based on numerous
ancillary datasets collected during the field campaign,
Carey et al. (2001), Rickenbach et al. (2002), Cifelli et
al. (2002), and others have determined that mean drop
sizes in the easterly regime are larger than those found
in the westerly regime and have related this finding to
differences in the meteorological conditions and micro-
physical processes at work during each regime. If Z–R
relationships failed to account for these differences,
easterly rainfall will be overestimated and westerly rain-
fall underestimated. Given the available ancillary ob-
servations (most notably large-scale wind direction) lo-
cal radar algorithms can, in principle, adopt a Z–R re-
lationship appropriate to each regime. By virtue of their
global coverage, however, satellite-based radar algo-
rithms rarely encounter a region where the properties
of local climate regimes have been studied to the extent
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FIG. 6. Mean vertical profiles of radar reflectivity for the two classes
highlighted in Fig. 5d in both the easterly and westerly regimes of
LBA. Mean horizontal gradients between nearest neighbors are pro-
vided in parentheses in the legend.

FIG. 7. Standard deviation of Zdr for all classes with near-surface
reflectivity of 38 dBZ (62) in the easterly (squares) and westerly
(triangles) regimes of LBA. The dashed and dotted lines correspond
to the entire easterly and westerly regimes, respectively.

FIG. 8. Mean Zdr for all mutual classes with near-surface reflectivity
of 38 dBZ (62) in the easterly (squares) and westerly (triangles)
regimes in LBA. The dashed and dotted lines correspond to the entire
easterly and westerly regimes, respectively. Dark data points corre-
spond to cases where the difference is reduced relative to the un-
classified regimes, while light points represent classes for which the
difference increases.

of those found in TRMM-LBA. As a result, ancillary
meteorological data do not provide sufficient informa-
tion with which to constrain DSD in global algorithms,
and they must rely on a satellite-observable-based form
of classification such as that described above. The true
test of such an approach is to assess whether or not it
can constrain DSD regardless of climate regime. The
analysis in section 2 ensures that the classification re-
duces easterly–westerly Zdr differences in the mean
sense, but it is instructive to look at a few specific ex-
amples. PDFs of Zdr for two classes from the rain-type
classification developed above that are found in both
the easterly and westerly regimes are presented in Fig.
5d. Mean Zdr’s observed in each class differ widely from
one another, but pixel classification by reflectivity struc-
ture is found to capture these differences in both re-
gimes. Furthermore, random errors due to variability
within the classes are ;75% lower than those in any of
the three preceding classification systems.

The correlation between reflectivity structure and
DSD is evident when Fig. 5d is compared with the mean
reflectivity profile for each class presented in Fig. 6.
Note how the strong similarity between reflectivity pro-
files from the easterly and westerly regimes for the same
rain type translates into a reduction in the Zdr bias be-
tween the two regimes. Both the PDFs of Zdr and the
reflectivity structure can be connected to microphysical
processes governing rainfall formation in each case. The
reflectivity profiles indicate that class 2 exhibits more
pronounced increase in reflectivity with height between
the surface and 3 km, a thicker liquid water column
perhaps indicative of the presence of supercooled drop-
lets lofted above the freezing level and much larger
reflectivities aloft. These characteristics suggest more
vigorous mixed-phase microphysics and more evapo-

ration at lower levels, both of which produce larger
raindrops and, hence, larger Zdr, than class 1.

Looking beyond these specific examples to the dataset
as a whole, Figs. 7 and 8 evaluate the overall perfor-
mance of rain-type classification in reducing random
and systematic errors in Zdr, respectively. The standard
deviations in Zdr for all rain-type classes having near-
surface reflectivities between 36 and 40 dBZ are pre-
sented in Fig. 7. This reflectivity range is highlighted
for two reasons: 1) it spans the range of reflectivities
for which Zdr differences between the easterly and west-
erly regimes are the largest (Carey et al. 2001), provid-
ing the most challenging test of the classification ap-
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TABLE 2. Classification performance with respect to reducing sZdr
within the easterly and westerly regimes of TRMM-LBA for various

surface reflectivity bins. The second and fifth columns indicate the total number of classes with at least 20 samples in each regime. The
fraction of easterly and westerly regime rainfall these classes represent is summarized in the third and sixth columns, respectively. Finally,
the fraction of this rainfall for which sZdr

is reduced in each regime is presented in the fourth and last columns.

Reflectivity
range NE fE,rain fE,reduced NW fW,rain fW,reduced

28–32
32–36
36–40
40–44

232
183

91
45

63%
62%
43%
34%

92%
84%
85%
95%

253
171

86
33

66%
56%
41%
27%

95%
93%
94%

100%

proach, and 2) it is representative of a large fraction of
the total rainfall in the dataset. To focus on statistically
significant results and to reduce noise in the Zdr mea-
surements, only classes that are observed at least 20
times in either the easterly or westerly wind regimes are
presented. These classes describe 43% of all easterly
regime rainfall and 41% of westerly regime rainfall and,
therefore, represent a significant cross section of the data
in the selected reflectivity bin. The data have been sorted
in order of increasing s for a cleaner presentation, soZdr

there is no significance to the apparent trend with in-
creasing class number in the figure. The dashed and
dotted lines present standard deviations over all easterly
and westerly pixels, respectively, for reference. Eighty-
nine percent of the easterly and 92% of the westerly
rain-type classes exhibit reduced s relative to the re-Zdr

gime means. On average, variability in Zdr, which can
be thought of as a source of random error in rainfall
retrievals, is reduced by ;30% in classifying by rain
type.

Similar results are obtained when other reflectivity
ranges are examined. Table 2 summarizes the fraction
of rainfall in each regime for which the standard de-
viation of Zdr is reduced through classification. Again,
the analysis is restricted to classes with at least 20 sam-
ples to ensure robust statistics, but in all cases the re-
sulting subsets provide a representative sample of the
full range. Variability in Zdr is reduced for ;90% of the
rainfall considered over this wide range of rainfall in-
tensities. Unfortunately, because of the decrease in fre-
quency of observations with higher Zsfc, sufficient sta-
tistics could not be compiled for higher reflectivity rang-
es. Fortunately, however, the data described in Table 2
cover the majority of the reflectivity range for which
the easterly and westerly regimes exhibit their greatest
Zdr differences (Carey et al. 2001) and, therefore, pro-
vide an important test of the classification technique.

While random errors may be reduced through spatial
and temporal averaging, biases introduced by systematic
changes in DSD, such as those associated with a shift
in climate regime, cannot. As a result, it is even more
important to assess the degree to which rain-type clas-
sification reduces the difference in mean Zdr between
the easterly and westerly regimes in LBA. Focusing on
the same 36 , Zsfc , 40 dBZ range, Fig. 8 compares

from all rain-type classes mutually observed in bothZdr

regimes. Dashed and dotted lines again correspond to
the complete easterly and westerly datasets, respective-
ly. Once again to isolate only classes with a statistically
significant number of samples, those that occur at least
20 times in both regimes are considered. The 46 classes
that make up the resulting subset account for more than
25% of the rainfall in each regime and therefore provide
a suitably large sample to be viewed as representative
of the properties of the 36 , Zsfc , 40 dBZ range as a
whole. A reduction in the fractional difference in Zdr

between the regimes is realized in all but 10 of the 46
rain types presented. In terms of the total rainfall at the
surface from all pixels in these classes, 78% fall into
the rain types with reduced easterly–westerly biases. It
is worth noting that the classes for which the Zdr bias
is not reduced seem to occur at large suggesting thatZdr

the microphysical processes leading to the larger rain-
drops are not captured as well by the vertical and hor-
izontal structure of the reflectivity field. Interestingly,
the vertical structures that correspond to these classes
are generally more vertically developed than those re-
lated to smaller Zdr (as is the case for the dark black
profiles shown in Fig. 6 corresponding to the class with
the larger Zdr highlighted in Fig. 5d). Perhaps differences
in aggregation and riming rates above the freezing level
escape detection in the classification process because of
the limited sensitivity of the S-Pol to ice particles. This
would imply that the raindrop DSD produced by melting
the ice particles created by these processes may exhibit
systematic differences between the two regimes even if
the reflectivity structures are more or less the same be-
low the melting level.

A similar analysis of other reflectivity bins is sum-
marized in Table 3. On average, the bias between the
two regimes is reduced for 78% of the total rainfall in
each regime. As in Fig. 8, however, there remain a num-
ber of classes for which the bias is not reduced in every
reflectivity range examined, suggesting that there are
factors systematically influencing DSD that are not cap-
tured in the reflectivity structure variables chosen for
classification, at least not at the resolution adopted here.
This is expected because of the complex nature of pre-
cipitation development and the fact that none of the
classification variables traces the time evolution of the
system and, as such, cannot be expected to completely
isolate the unique set of microphysical processes within
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TABLE 3. As in Table 2, but with respect to reducing Zdr biases between the easterly and westerly regimes. In this case, the fourth and
sixth columns present the fraction of the rainfall found in the sample classes for which the bias in Zdr between the regimes is reduced.

Reflectivity
range N fE,rain FE,reduced fW,rain FW,reduced

28–32
32–36
36–40
40–44

160
108

46
18

52%
47%
29%
34%

76%
64%
83%
95%

54%
56%
26%
27%

76%
69%
76%
90%

FIG. 9. Mean vertical profiles of reflectivity for all classes with
near-surface reflectivity of 38 dBZ (62) in the easterly (light) and
westerly (dark) regimes of LBA.

it. It is important to note, however, that even in such
cases the classification methodology provides a quan-
titative estimate of the magnitude of the resulting po-
tential bias introduced by the DSD differences that re-
main within any given class.

Since the properties of many rain-type classes are
similar in both the easterly and westerly climate re-
gimes, the disparties in drop size documented by Carey
et al. (2001) must be partially attributed to differences
in the frequency of occurrence of different rain types
in each regime. If this hypothesis is correct, the observed
differences in synoptic conditions between the easterly
and westerly wind periods in TRMM-LBA and the re-
sulting changes in mean DSDs should manifest them-
selves in the mean vertical and horizontal structure of
the observed reflectivity profiles in each regime. Figure
9 compares mean easterly and westerly reflectivity pro-
files for all pixels with Zsfc between 36 and 40 dBZ.
While their near-surface reflectivities are similar, there
are a number of differences in the vertical structure of
the associated reflectivity profiles. Rainfall in the east-
erly regime exhibits larger reflectivities between 2.5 and
5.5 km perhaps because of the existence of a larger
concentration of supercooled droplets (Cifelli et al.
2002), a more pronounced peak in reflectivity at 4 km,
and less horizontal variability than that in the westerly
regime.

These findings are consistent with the description of
the environmental properties of each regime described
in Rickenbach et al. (2002) and Carey et al. (2001).
Recall that the lower troposphere is drier in the easterly
regime than in the westerly regime, consistent with
evaporation at lower levels implied by the reflectivity
profiles. Furthermore, the easterly regime has more nu-
merous CCN so a greater fraction of the easterly rainfall
likely derives from mixed-phase microphysical pro-
cesses. This is consistent with the observations of Cifelli
et al. (2002), Rickenbach et al. (2002), and Halverson
et al. (2002) who report an absence of lighting during
westerly rainfall events in TRMM-LBA. These results
support the contention that differences in the mecha-
nisms for rainfall formation simultaneously manifest
themselves in DSD and in the vertical and horizontal
structure of observed reflectivity profiles. Comparison
with Fig. 6 suggests that regime-dependent differences
in DSD between the easterly and westerly regimes in
LBA are partially resolved through the rain-type clas-
sification approach described above.

b. CSU-CHILL radar data

Despite the documented differences between the east-
erly and westerly meteorological regimes in TRMM-
LBA, rigorous testing of the uniformity of DSD prop-
erties within each rain type requires the examination of
precipitation events from a wider variety of synoptic
conditions than can be observed in an single location.
Data from the CSU-CHILL radar facility in northeastern
Colorado are well-suited for this purpose not only be-
cause of the similarities between the S-Pol and CHILL
radars (for a detailed description of the CSU-CHILL
radar facility the reader is directed to http://
chill.colostate.edu/CSU-CHILL.html) but, more impor-
tantly, because of the contrasting environment for pre-
cipitation development they sample. Unlike the wide-
spread precipitation that is encountered during moisture-
rich Amazonian wet season, the precipitation that
develops in the generally dry eastern Colorado atmo-
sphere generally owes its existence to afternoon thun-
derstorms that are often accompanied by hail and fre-
quent cloud-to-ground lightning [for a complete de-
scription of the different mechanisms governing pre-
cipitation formation in the High Plains and subtropics
see Cotton and Anthes (1989)]. Thus we anticipate sub-
stantial differences in the microphysical processes lead-
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TABLE 4. The Zdr properties of classes observed in both the CHILL and LBA datasets. Only pixels with surface reflectivities of
38 6 2 dBZ are considered.

Class Sample
LBA
mean s Sample

CHILL
mean s

All CHILL pixels
All LBA pixels
Class 1
Class 2
Class 3
Class 4
Class 5

0
17 941

9
25
18
48
18

—
0.8217
0.8223
0.7578
1.0078
0.7480
0.9121

—
0.3558
0.1924
0.3757
0.4985
0.1806
0.2809

2334
0
8
6
8
8
8

1.1711
—

0.8828
0.8315
0.8509
0.7271
0.8346

0.4693
—

0.6569
0.2757
0.2495
0.2129
0.2155

FIG. 10. Mean reflectivity profiles for (a) all classes with near-surface reflectivity of 38 dBZ (62) from the CHILL
(light) and LBA (dark) datasets, and (b) classes 1 and 2 from Table 2 observed in both CHILL and LBA. In each case,
mean horizontal gradients between nearest neighbors are provided in parentheses in the legend.

ing to precipitation formation in each region and equiv-
alent differences in the resulting DSD and observed
reflectivities. Provided the data are stratified into rain
types by their three-dimensional reflectivity structures,
however, the DSDs in both regions should be similar.

The data employed in the present study consist of 35
scans from four distinct precipitation events observed
by the CHILL radar in northeastern Colorado between
2 August 2001 and 24 August 2002. These data were
screened for hail in order to avoid contamination in their
Zdr signatures that masks its relationship to DSD. These
cases span a number of different examples of summer-
time precipitation, ranging from a large area of wide-
spread precipitation surrounding the radar (approxi-
mately 200 km across) with a number of embedded
heavier convective elements to an organized line of con-
vection that developed just to the east of the radar and
propagated out onto the plains in eastern Colorado.
Mean properties of all TRMM-LBA and CHILL pixels
with near-surface reflectivities between 36 and 40 dBZ
are compared in Table 4 along with properties of the
five rain types that are encountered at least five times
in both datasets. Note that in this case a mutual class
as redefined as only requiring a minimum of 5 occur-
rances in both the CHILL and LBA datasets as opposed
to the 20 occurances required in the comparison of east-
erly and westerly regimes in LBA. This is necessary

because the rainfall classes overlap much less frequently
in these very disparate climates.

The raindrops observed by the CHILL radar are sub-
stantially larger than those found during TRMM-LBA
for the reflectivity range considered. This is likely a
result of enhanced evaporation at lower levels and the
predominance of mixed-phase microphysics in Colo-
rado. In addition, it has been speculated that some of
the raindrops in High Plains thunderstorms may have
stabilizing ice cores, reducing the effects of drop break-
up and allowing larger raindrops to survive than would
be found in more humid tropical regions (Ryzhkov and
Zrnic 1996). Remarkably, the Zdr bias between the da-
tasets (i.e., the difference between the values in the third
and sixth columns of Table 2) is reduced by at least a
factor of 2 in every one of the five classes mutually
found in both datasets. This dramatic improvement is
likely due to the more extreme differences in the large-
scale environments encountered in each region than
those that exist between the easterly and westerly re-
gimes in LBA. The large differences in the correspond-
ing mean vertical profiles of radar reflectivity presented
in Fig. 10a confirm that this is the case. Unlike the subtle
differences in the reflectivity profiles corresponding to
the easterly and westerly regimes during TRMM-LBA
(Fig. 9), the CHILL data exhibit a much lower and more
pronounced melting level, a substantially larger ice con-
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tent aloft, significantly greater evaporation at lower lev-
els, and more horizontal inhomogeneity than their coun-
terparts from TRMM-LBA. When the analysis is re-
stricted to pixels with similar profiles (which presum-
ably share more common microphysical processes),
such as those presented in Fig. 10b, the biases in the
raindrop DSD one would infer from the corresponding
Zdr measurements is substantially reduced. These results
support the hypothesis that it may be possible to exploit
the connection between microphysics, DSD, and three-
dimensional reflectivity structure to reduce random and
systematic errors in the DSD assumptions employed in
single-parameter radar rainfall retrieval algorithms.
Even though the environment and mechanisms sur-
rounding precipitation formation in Colorado and in the
Amazon are very different, the DSDs for pixels found
in both regions that share the same vertical and hori-
zontal reflectivity structures are generally similar.

4. Rain types on global scales

a. Exporting LBA-defined rain types elsewhere in the
Tropics

These results suggest that objectively classifying pix-
els according to the vertical and horizontal structure of
their observed reflectivity fields provides an additional
constraint on rainfall retrievals, but only observations
that can be directly assigned to rain types observed in
the presence of explicit DSD measurements (e.g., from
polarimetric radars, disdrometers, or profilers) will ben-
efit from the classification approach. It is therefore im-
portant to determine the degree to which the rain types
observed in TRMM-LBA are representative of rainfall
elsewhere in the Tropics. To this end, TRMM PR data
from the months of December 1999, January 2000, and
February 2000 have been classified according to Table
1 to determine the fraction of rainfall that actually falls
into classes observed in the TRMM-LBA field cam-
paign. Figure 11 presents the fraction of rainfall that
can be attributed to rain-type classes defined in TRMM-
LBA for all 58 3 58 grid boxes in the Tropics. On
average, 22% of the rainfall observed by TRMM falls
into reflectivity-based rain-type categories observed in
LBA. Some regions, however, are much better repre-
sented by LBA than others. Conventional wisdom would
suggest that one should look to a land-based site to study
continental precipitation and an ocean-based site to ex-
amine oceanic precipitation. Figure 11, on the other
hand, suggests that the rainfall observed in LBA is more
representative of that occurring the west Pacific (where
almost 40% of the local rain falls into classes observed
in LBA) than the rain systems found in South Africa.
It is worth nothing that Rondonia, Brazil, has been
termed the ‘‘Green Ocean’’ by several researchers (e.g.,
Williams et al. 2002), consistent with this finding.

To accurately assign a DSD and an associated un-
certainty to a rain-type category it must, of course, be

observed often enough that sufficient statistics can be
accumulated to define its properties. The lowest panel
of Fig. 11 restricts the comparison to classes that are
observed a minimum of 20 times in LBA. In general,
the structure of the map mimicks that in the middle
panel, but the fraction of rainfall that falls into rain types
observed in LBA is substantially reduced. Overall, the
LBA rain types for which appropriate statistics exist
characterize 3.6% of all rainfall observed by TRMM.
Furthermore, the fact that 6 times as much rainfall falls
into classes with fewer than 20 samples suggests that a
longer field campaign in the same region should allow
us to accumulate sufficient statistics to define the prop-
erties of a much greater fraction of tropical rainfall.
Noting that the LBA S-Pol data cover only 50 days over
a region that represents less than one ten-thousandth
(0.0098%) of the TRMM sampling area,3 these results
are promising.

b. Toward a new strategy for validating global
rainfall products

As stated at the outset, satellite-derived climate re-
cords are susceptible to regime-dependent systematic
errors in algorithm parameters that are not explicitly
measured by the satellite. Assessing the magnitude of
the biases introduced by such errors requires extending
modern algorithm validation beyond the classical ap-
proach of evaluating retrieved products to verify the
assumptions used to obtain them. In light of the results
presented here, a new philosophy for algorithm vali-
dation emerges. All unobserved assumptions in the al-
gorithm are treated as soft constraints and weighted ac-
cording to how well they can be prescribed by auxiliary
external validation. In this framework, the retrieval pro-
cess can be thought of as an error propagator that uses
the uncertainties in both the measurements and assumed
parameters in conjunction with a physical model to infer
a set of desired retrieval products with associated un-
certainties. This approach places equal importance on
assessing the uncertainties in assumed parameters as it
does on making the observations themselves. In the con-
text of the rainfall retrieval problem, therefore, it is
equally valuable to assess the means and standard de-
viations of the polarimetric observations assigned to any
given rain-type class as it is to verify the retrieved rain-
fall rate.

Adopting this philosophy has implications for future
precipitation missions, such as the Global Precipitation
Measurement (GPM) mission. If such an approach is
adopted, it will be necessary for validation programs
connected to these missions to focus on obtaining col-
located ground-based measurements of DSD and three-
dimensional maps of radar reflectivity from a broad
range of precipitation systems to improve confidence in

3 The area sampled by the S-Pol is ;3.1 3 104 km2, while the
area of sampled by TRMM (6408 latitude) is ;3.2 3 108 km2.



846 VOLUME 5J O U R N A L O F H Y D R O M E T E O R O L O G Y

FIG. 11. Mean rainfall at 58 3 58 resolution from the PR-based 2A25 product for (top) the months of
Dec 1999 through Feb 2000, (middle) the fraction of this rainfall that falls into classes observed in the
TRMM-LBA experiment, and (bottom) the fraction that falls into LBA-defined classes with at least 20
samples.

the results and represent a higher fraction of global rain-
fall. Furthermore, through maps such as those produced
in the preceding section, the method itself provides a
means for assessing where validation sites need to be
placed. Careful analysis of regions where a significant
fraction of precipitation falls in rain types not charac-
terized by existing validation data may provide insight
into the best sites to conduct future experiments. Given
a choice of proposed future validation sites, for example,
global maps of the spatial correlations between the rain
types observed by the satellite at each site and those
observed elsewhere should indicate the site or sites that
have the greatest potential for filling in information
about missing classes.

Two such maps are presented in the middle and lower
panels of Fig. 12 that investigate the representativeness
of rainfall in the northern South Africa and Cape Hat-
teras, North Carolina, regions, respectively. Comparing
with Fig. 11, it is apparent that ground-based polari-
metric radar observations in South Africa would provide
substantial information to complement those made in

the Amazon. As one would expect, the rain types defined
in this region clearly describe those found elsewhere in
the African continent but, less expectedly, they also ap-
pear to be representative of those found in subtropical
oceanic regions, an area poorly characterized by the
TRMM-LBA rain types. Similar observations taken off
the east coast of North Carolina, on the other hand, may
represent some of the precipitation occurring in the win-
ter hemisphere subtropics but contain little or no rain
types observed elsewhere in the Tropics. As a result, it
is perhaps a less attractive site for future field experi-
ments if they are directed at validating tropical rainfall
estimates. To fully assess the benefits of any given site
it is important to consider a much longer time period
than the 3 months analyzed here, and the expected du-
ration of the field experiment must be accounted for.
Polarimetric radar sites that operate on a more contin-
uous basis, like the CSU-CHILL radar facility, for ex-
ample, provide invaluable sources of data, as they com-
plement intensive observation periods in field cam-
paigns with continuous observations over a longer time
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FIG. 12. As in Fig. 11 except that the lower two panels represent the fraction of rainfall that falls into
classes observed in 58 3 58 boxes located in (middle) northern South Africa (208–258S, 258–308E) and
(bottom) Cape Hatteras, NC, (358–408N, 708–758W) regions, respectively.

frame from which a diverse collection of precipitation
events can be accumulated.

5. Discussion

The preceding analyses, while preliminary in nature,
suggest that classifying rainfall by the three-dimensional
structure of its reflectivity field offers the potential to
reduce both random and systematic errors in DSDs as-
sumed in global rainfall retrievals. Furthermore, differ-
ences in the polarimetric observations corresponding to
identical rain types observed in different field cam-
paigns provide an estimate of possible regime-depen-
dent systematic errors that results from the fact that rain
types can never be perfectly defined. Random variability
within the rain types themselves, on the other hand,
provides an estimate of random errors in model as-
sumptions that can be propagated through the retrieval
via an end-to-end error model to estimate retrieval un-
certainties. Within this framework the key to algorithm
validation shifts from direct verification of products sus-
ceptible to climate-regime-dependent biases that cannot

be removed from the data, to determining the uncer-
tainties in the principal assumptions required to con-
strain the algorithm. Subsequently, through the identi-
fication of similar rain types occurring around the world,
rain-type classification provides a means for exporting
the information learned in these comprehensive ground
validation experiments to quantify satellite uncertainties
on a global scale. In addition, as more data become
available and our confidence in the properties of rain-
type classes increases, the results can be used to supply
crude estimates of Zdr and Kdp to radars with no polar-
ization capability. In this way, biases in rainfall products
arising from climate regime dependences can be par-
tially mitigated.

The fact that some DSD differences often remain even
after classification implies that other factors influence
DSD beyond those considered here. Further study will
be required to assess the role played by aerosol type
and concentration, wind shear, buoyancy, and other fac-
tors in determining DSD and to further delineate dy-
namical and microphysical environmental regimes for
precipitation formation. Such an analysis will also be
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necessary to reconnect the reflectivity-based classifi-
cation scheme outlined here to the ground-based ap-
proaches centered on identifying climate regimes. Ad-
ditional field campaigns and longer duration experi-
ments are also needed to both characterize rain-type
classes that were not observed in LBA and accumulate
better statistics to improve our level of confidence in
those that were. Furthermore, it will be necessary to
supplement polarimetric radar observations with other
measures of DSD such as those provided by disdro-
meters and wind profilers in order to verify the findings
and quantify the degree to which the DSD itself is con-
strained through classification. Even so, the method pre-
sented here provides a means for amalgamating ground-
based observations into a seamless framework for al-
gorithm development and validation in the future. In
principle, the philosophy of objectively classifying data
and validating uncertainties can be adapted to the com-
plete set of assumptions required in any physically based
retrieval algorithm provided care is taken to frame the
problem in terms of a suitable set of observables.
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