Effects of uncertainty in TRMM precipitation radar path integrated attenuation on interannual variations of tropical oceanic rainfall

Franklin R. Robertson and Dan E. Fitzjarrald
NASA/ Marshall Space Flight Center, USA

Christian D. Kummerow
Colorado State University, USA

Received 9 October 2002; revised 20 November 2002; accepted 15 December 2002; published 25 February 2003.

Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30° N/S) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Time series of rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) over the tropical oceans show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. We show that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series. Our analysis of discrepancies between the PR rainfall and attenuation suggests that uncertainty in the assumed drop size distribution and associated attenuation/reflectivity/rainfall relationships inherent in single-frequency radar methods is a serious issue for studies of interannual variability. INDEX TERMS:

1. Introduction

It is well documented that El Nino-Southern Oscillation (ENSO) events, with marked SST changes over the tropical oceans, produce significant regional changes in precipitation, water vapor, and radiative fluxes in the tropics [e.g. Ropelewski and Halpert, 1987; Sun and Trenberth, 1998; Curtis and Adler, 2000]. However, we still cannot adequately quantify the associated net integrated changes to water and heat balance over the entire tropical oceanic or land sectors. Soden [2000] has noted that in contemporary climate models run with specified SST, precipitation variations averaged over the tropical oceans seem much smaller in amplitude than those of satellite estimates. Robertson et al. [2001] showed that substantial disagreement exists among contemporary satellite estimates of interannual variations in tropical rainfall that are associated with SST changes. Berg et al. [2002] have documented the distinct differences between precipitation structure over the eastern and western Pacific ITCZ and noted how various satellite precipitation algorithms may respond quite differently to ENSO modulations of these precipitation regimes. Resolving this uncertainty is important; ENSO, the most dominant coupled mode in our climate system, represents a fundamental perturbation of tropical monsoonal circulations. Furthermore, reproducing the regional and integrated relationship between SST and precipitation is an important though obviously not sufficient test of how robustly climate models treat physical processes related to climate change.

[3] TRMM is the first satellite to carry both active and passive sensors for measuring precipitation. Each of these approaches has its associated uncertainties. Passive estimates from the TMI are a less direct rainfall estimate since the radiometer responds to integrated liquid water, not just to raindrops. Variations in rain layer depth and influence from water vapor and surface wind variations can also complicate extracting clean interannual signals in rainfall. By comparison, the more direct measurement of hydrometeors by the TRMM PR would seem to have less uncertainty; however, the PR operates at a single frequency (13.8 GHz) so that microphysical assumptions regarding drop size distributions come into play in the process of correcting the measured reflectivity for attenuation and relating reflectivity structure to rainfall rate.

[4] The purpose of this paper is to document current discrepancies between various TRMM algorithms in the characterization of interannual variability (IAV) and to provide evidence that the source of this problem lies in microphysical uncertainties inherent in single-frequency rainfall estimates derived from the PR. Our analysis is based on the 3A25, 3B31, and 3A11 TRMM data sets which are monthly mean statistics of instantaneous retrievals (Level-2 products) gridded to five degree spatial resolution. The National Oceanic and Atmospheric Administration Operational SST products [Reynolds, 1988] are also used.

\[
\frac{\Delta m(t)}{\Delta L(t)} = A(t) = \text{[Equation]}
\]
The right-hand-side quantity represents an attenuation factor, \(A(r) \), which measures the fraction of signal depletion over the distance \(r \) between the radar and a range gate within the precipitating footprint. Parameters \(\alpha, \beta \) and \(\varepsilon \) are related to microphysical assumptions; their values are assumed initially and modified as noted below. When the entire column from the radar to the surface is considered, the two-way path-integrated attenuation to the surface \((r = r_{\text{gs}}) \) is denoted as \(\text{PIA}_{\text{H-B}} = -10 \log_{10} A(r_{\text{gs}}) \) and has units of dB. If \(\varepsilon = 1.0 \) then (1) corresponds to the Hitchens-Borden (H-B) relationship [Hitchen and Borden, 1954] which models the rainfall attenuation correction by the power law relationship involving \(Z_{\text{m}}(r) \) in the integrand of (1). An unfortunate property of the H-B solution is that at large attenuation, \(A(r) \) approaches zero and unless the integral quantity on the right-hand-side of (1) is known to extraordinary accuracy the solution can become unstable. At high rain rates the inherent uncertainties in the quantity \(\alpha(s)Z_{\text{m}}^{\nu}(s) \) can often yield negative values for \(A(r) \) and preclude accurate recovery of \(Z_{\text{m}}(r) \).

One advantage of viewing rainfall from a spaceborne radar is that an alternative estimate of path-integrated attenuation, can be obtained by comparing returned power from the ocean surface in raining scenes with that from non-raining scenes [Meneghini et al., 2000]. Termed the Surface Reference Technique (SRT), this approach is formulated as

\[
\text{PIA}_{\text{SRT}} = \Delta \sigma^o = \langle \sigma^o_{\text{no-rain}} \rangle - \sigma^o_{\text{min}},
\]

where \(\langle \sigma^o_{\text{no-rain}} \rangle \) denotes the normalized radar cross-section (NRCS) in rain-free conditions for a given incidence angle away from nadir. The decrease in radar cross-section, \(\Delta \sigma^o \), due principally to precipitation, is expressed in dB. With two alternative estimates of \(\text{PIA} \), one from the H-B solution and one from changes in observed surface cross-section, the 2A25 algorithm then uses a maximum likelihood estimator (MLE) technique to derive an optimum \(\text{PIA} \) estimate. Once this estimate is obtained the parameter \(\varepsilon \) can be varied so that \(A(r) \) in (1) is consistent with the optimum \(\text{PIA} \) estimate. Because the effect of \(\varepsilon \) is to make a constant multiplicative adjustment to \(\alpha \), this method of accommodating the SRT estimate of \(\text{PIA} \) is termed the “alpha-adjustment method” [Iguchi and Meneghini, 1994]. At heavier rainrates where H-B estimates fail, the SRT provides accurate attenuation corrections to enable retrieval of \(Z_{\text{m}} \). At very light rainrates where the H-B solution is the most accurate, \(\text{PIA}_{\text{SRT}} \) becomes noisy because the attenuation signal falls to values near inherent background variations in \(\sigma^o_{\text{no-rain}} \). Alterations in \(\alpha \) imply a change in the drop size distribution (DSD) and, in turn, changes in the associated \(Z_{\text{m}} \)-Rainfall relationship. Once \(\varepsilon \) is determined, parameters in the power law relationships governing attenuation, reflectivity, and rainfall rate are adjusted so that they are consistent with the implied changes in the DSD.

3. Results

The essence of the problem to be addressed here is illustrated in Figure 1. Precipitation anomaly time series are shown for three different TRMM algorithms, each representing the departures of rainfall rate averaged over the tropical oceans (30° N/S) from a monthly-resolved climatology for the period Jan 1998–July 2001. The anomalies have been normalized by the 44-month mean so that they represent fractional variations. The corresponding tropical ocean averaged SST anomalies are also presented. Both of the TMI-based passive algorithms [Wilheit et al., 1991; Kummerow et al., 2001] exhibit a tendency toward elevated (depressed) rainfall in association with warmer (colder) SST anomalies. This is consistent with the behavior noted in other passive microwave data sets by Robertson et al. [2001]. In contrast, the TRMM PR anomalies are of weaker amplitude and have essentially no correlation with SST changes. It should be emphasized that these anomalies represent the integration of contributions by regional patterns of both positive and negative sign that possess much larger amplitudes; thus, accurate rainfall estimates are needed to avoid the effects of cancellation error.

Time series histograms of \(\text{PIA}_{\text{SRT}} \) and PR rainfall offer insight as to relationship between attenuation corrections and rainfall. Figure 2a shows time series of interannual anomalies in \(\text{PIA}_{\text{SRT}} \) averaged over the tropical oceans. Data at four incidence angles (0, 5, 10 and 15 degrees from nadir) available from the 3A25 data set have been averaged and scaled to account for the varying number of available monthly observations. The annual cycle for each of 30 attenuation intensity bins was computed and removed. Although somewhat noisy, the resulting pattern shows coherent interannual variations in the frequency of attenuation intensities. For example, in JFMA 1998, above average counts are found at all attenuations >0.5 dB with a prominent maximum near 2.0 dB. Above 1.0 dB, most of 1998 (except MJJ) shows anomalously higher frequencies than succeeding years. Below about 1.0 dB the pattern behaves in an opposite sense; generally below average occurrences dominate 1998 and above average counts are found in the second half of 1999. Such a pattern is consistent with shifts in the \(\text{PIA}_{\text{SRT}} \) frequency distribution to larger (1998) and smaller (1999) values. Based on analysis of \(\sigma^o \) data from non-raining cases, Meneghini et al. [2000] find the standard deviation (SD) of \(\langle \sigma^o_{\text{no-rain}} \rangle \) over ocean to vary from about 1.2 to 3.75 dB, depending on incidence angle. The SD statistics are used as a basis for reliability estimates used in the MLE procedure. \(\text{PIA}_{\text{SRT}}/\text{SD} > 3.0 \) is termed reliable, \(\text{PIA}_{\text{SRT}}/\text{SD} < 1.0 \) is regarded as
unreliable, and values falling between these limits are marginally reliable. Only SRT measurements classified as reliable or marginally reliable are included in these histogram data. While the spatial and temporal averaging in the analysis here undoubtedly reduce random noise, it is clear that attenuation values below 1.0 dB should be regarded with caution.

By integrating the occurrence anomalies of the 30 categories for each month we recover the total _PIASR anomalies. Several thresholds of _PIASR have been picked as starting values: 0.01, 1.5, and 3.4 dB. Using a representative attenuation-rainfall relationship of $k = 0.024R^{1.15}$ [Meneghini et al., 2000], and assuming a rain column depth of 5 km yields _PIASR values corresponding roughly to rain rate thresholds of 0.05, 5.0 and 10.0 mm h$^{-1}$. These calculations (Figure 2b) reveal interannual variability of _PIASR that contrasts remarkably with the PR surface rainfall variations presented in Figure 1. Whereas the 2A12 and 2A25 time series in Figure 1 correlate at only 0.12, the correlation between the 2A12 and _PIASR time series using the 1.5 dB threshold is 0.75. Note that although the curve integrating over all 30 _PIASR categories results in the smallest magnitude, it too is differs from the PR trace in Figure 1.

To examine the behavior of rainfall at various intensity thresholds an analogous treatment of the PR rainfall rate frequency histograms using the 3A25 data is presented in Figures 2c and 2d. The histogram data in Figure 2c show that in contrast to the _PIASR result, much of 1998 is dominated by decreased occurrences of rainfall at all rates between about 0.5 and 40 mm h$^{-1}$. In 1999 the anomalies largely switch sign. In Figure 2d rain rate histogram anomalies are integrated above thresholds of 5, 27, and 48 mm h$^{-1}$. It is clear that only for thresholds above 30 to 40 mm h$^{-1}$ does the IAV of rain rate resemble that of the _PIASR. These striking differences suggest an inconsistency between PIA in 2A25 and _PIASR at moderate to light rainfall rates.

Supporting evidence for the sensitivity of PR rainfall to attenuation correction also comes from considering precipitation rates at higher altitudes in rain systems where attenuation is much weaker. Ice formation and growth processes dominate rainfall production in deep convection above the freezing level [Stith et al., 2002]. Mixed phase regions in deep tropical convection are typically confined to levels warmer than $-10^\circ{\text{C}}$ with the bulk of the precipitation...
mass and $Z_e \geq 30$ dBZ below the freezing level (≈5 km) [Petersen and Rutledge, 2001]. Thus, regions above the freezing level exhibit much lower attenuation. Figure 4 shows PR precipitation anomalies at 2, 4 and 6 km. The 4 and 6 km levels bracket the freezing level typical for tropical oceanic regions. The interannual behavior at 6 km is strikingly different from that at 2 and 4 km. Precipitation anomalies above 10% are present in early 1998 and are persistently near −5% during 1999 and early 2000. It is not yet clear to what degree the 6 km PR time series represents variations in ice mass above 6 km as opposed to interannual variations in vertical penetration of the mixed phase region with its greater reflectivity. However, a preliminary analysis of the convective/stratiform partitioning of the 6 km precipitation has shown roughly equal contributions to the interannual signal. Since stratiform precipitation at 6 km is unlikely to contain significant liquid water, the IAV cannot be explained by mixed phase variations alone. The 6 km time series bears a strong resemblance to the PIASS anomalies in Figure 2, with the correlation between the two time series at 0.80. This level of agreement is similar to that found by Robertson et al. [2001] between two passive microwave algorithms—one based on scattering and the other on emission. Physically, one would expect the abundance of ice and precipitation rates at 6 km to be strongly related to attenuating rain below the freezing level since deep convection dominates contributions by warm rain processes. Because of the abundance of ice and the lack of strong reflectivities above 6 km, very little attenuation adjustment is needed and Z_e is largely independent of PIASS contributions. We can thus further infer from the strong correlation between PIASSR and the PR at 6 km that any systematic interannual biases in Z_e must be rather minimal when averaged to large space and time scales and that variations in ocean surface returns are not determining the IAV in PIASSR.

4. Conclusions

[12] In summary, we have shown that at PIA values corresponding to rain rate thresholds of several mm h$^{-1}$ and higher, the SRT method yields an IAV signal markedly different from that of the PR 2A25 algorithm for regions below the freezing level. Only for rain rates ≥ 40 mm h$^{-1}$ do PIASS variations match those of the rainfall retrieval. A full explanation for this behavior is still being sought. One factor could be the assigned relative error properties of the SRT and H-B attenuation estimates used to retrieve the optimal PIA. However, for lighter rain rates, the PIASSRT seems to be at odds with the PIASS derived from empirically-based a priori DSD estimates and the associated parameters α, β, a, and b that interrelate attenuation, reflectivity, and rain rate—regardless of how they may be adjusted in the MLE procedure. Unlike rainfall rate or reflectivity, PIASSRT is free from any a priori microphysical assumptions. The PIASSR IAV was found to agree closely with TRMM (and other) passive microwave estimates of rainfall. Furthermore, the close agreement in IAV between PIASSR and PR 2A25 precipitation at 6 km where attenuation is minimal suggests that both are robust in seeing the IAV signal of deep convection. Lacking any adequate “ground” validation of rainfall, this close agreement between two independent methodologies lends strong support to each as measures of interannual variations of precipitation. However, we caution against using the present findings as quantitative validation of the passive algorithms since other uncertainties remain. Ambiguities inherent in retrieving rainfall estimates from single-frequency radar measurements are serious for climate applications. Dual-frequency measurements from the planned Global Precipitation Mission [Asrar et al., 2001] should remove many of these uncertainties. In the meantime, a more in-depth analysis of the PIASSRT climatology from TRMM and its relationship to passive rainfall measurements should prove illuminating.

[13] Acknowledgments. This work was supported by the NASA Global Water and Energy Cycle Program, the Global Precipitation Project Office, and the TRMM Science Program. The authors thank Robert Meneghini for insightful discussions concerning the 2A25 and SRT algorithms.

References

Berg, W., C. Kummerow, and C. A. Morales, Differences between east and west Pacific rainfall systems, Accepted J. Climate, 2002.

F. R. Robertson and D. E. Fitzjarrald, NASA Marshall Space Flight Center, Huntsville, AL 35805, USA. (pete.robertson@msfc.nasa.gov)

K. D. Kummerow, Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA.