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ABSTRACT

A methodology is described to construct fully parametric rainfall retrieval algorithms for a variety of passive
microwave sensors that exist today and are planned for the future. The Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI) is used to retrieve nonraining geophysical parameters. The method then
blends these background geophysical parameters with three-dimensional precipitation fields obtained by matching
the TRMM precipitation radar (PR) reflectivity profiles with cloud-resolving model simulations to produce a
consistent three-dimensional atmospheric description. Based upon this common description, radiative transfer
simulations corresponding to specific microwave sensors are then employed to compute radiances from clear
and rainy scenes, as might be seen by any specified microwave radiometer. Last, a Bayesian retrieval methodology
is used in conjunction with this database to derive the most likely surface rainfall as well as its vertical structure.
By avoiding any dependencies on specific channels or channel combinations, the technique can readily be adapted
to different sensor configurations. The algorithm performance is tested for a variety of sensor designs using
synthetic retrievals to demonstrate its capability for consistent rainfall estimates. Whereas actual retrievals would
be sensitive to the details of the a priori database construction, results from this study indicate that even modest
radiometers can retrieve unbiased rainfall rates when constrained by an a priori database constructed from the
TRMM satellite. Random errors are correlated to unobserved variations in the vertical and horizontal structure
of the precipitation and, thus, depend upon sensor design specifications. The fidelity of these synthetic retrievals
is briefly examined by comparing the simulated brightness temperature (Tb) generated in this study with direct
observations by the TRMM TMI. Good physical consistency between the simulated and TRMM observed Tbs
is found in precipitating regions for frequencies at which emission processes dominate the radiometric signal.
The consistency is poor for higher-frequency microwave channels for which ice scattering is important. Greater
consistency between the computed and observed Tbs should be sought before replacing current operational
algorithms with the parametric equivalent.

1. Introduction

The evolution of rainfall retrievals from passive mi-
crowave sensors closely followed the development and
improvement of satellite sensors, starting with the Elec-
tronically Scanning Microwave Radiometer (ESMR)
launched on Nimbus-5 in December 1972. It was a single
channel, 19-GHz radiometer. Allison et al. (1974) used
data from the Nimbus-5 ESMR to map rainfall areas in
a variety of tropical disturbances. Nimbus-5 was fol-
lowed by Nimbus-6 in June of 1975, carrying an ESMR
with a 37-GHz channel. Concurrently, more quantitative
approaches were developed by Wilheit et al. (1977),
Weinman and Guetter (1977), Rodgers et al. (1979), and
Jung (1980). These were designed to estimate a single
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rainfall parameter from a single spectral measurement
through idealized brightness temperature–rain-rate re-
lationships. Once these algorithms achieved a certain
maturity, however, it was clear that more than one fre-
quency was needed in order to properly retrieve the
column water amounts. The first multichannel sensor,
the Scanning Multichannel Microwave Radiometer
(SMMR) on Nimbus-7, was launched in October 1978
and included frequencies ranging from 6.6 to 37 GHz,
with spatial resolutions ranging from 136 km 3 89 km
at 6.6 GHz to 22 km 3 18 km at 37 GHz. SMMR
measured both the horizontal and vertical polarizations.
Spencer et al. (1983a) regressed SMMR multichannel
radiances against radar data over the Gulf of Mexico
with some success. He was also able to use the bright-
ness temperature (Tb) depression caused by ice scatter-
ing at 37 GHz to develop an empirical algorithm over
land surfaces (Spencer et al. 1983b). A physically based
rainfall retrieval, based upon detailed modeling of the
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sensor response to precipitation profiles, was developed
by Olson (1989).

Following SMMR, the Defense Meteorological Sat-
ellite Program (DMSP) carried the Special Sensor Mi-
crowave Imager (SSM/I), which was first flown on
DMSP-8 in August 1987. Much like the SMMR, the
SSM/I is a conically scanning radiometer with seven
channels, ranging from 19.3 to 85 GHz, and spatial
resolutions ranging from 69 km 3 43 km to 15 km 3
13 km, respectively. The excellent calibration of the
SSM/I, coupled with the data continuity provided by
DMSP from 1987 to the present, led to much attention
paid to the improvement of microwave rainfall esti-
mates. Three classes of algorithms emerged: (a) the
‘‘emission’’-type algorithms, following Wilheit’s early
work with ESMR (e.g., Wilheit et al. 1991; Berg and
Chase 1992), (b) the ‘‘scattering’’ algorithms, following
Spencer’s early work with SMMR over land (e.g., Grody
1991; Ferraro and Marks 1995), and (c) the ‘‘multi-
channel inversion’’-type algorithms that expanded upon
Olson’s earlier work (e.g., Mugnai et al. 1993; Kum-
merow and Giglio 1994; Smith et al. 1994; Petty 1994).

The Tropical Rainfall Measuring Mission (TRMM)
was launched in November 1997. It carries the TRMM
Microwave Imager (TMI), which is based upon SSM/I
technology, but with additional 10.7-GHz horizontal po-
larization (H) and vertical polarization (V) channels to
expand the dynamic range of emission signals in the
Tropics. In addition to these channels, the TRMM sat-
ellite flies at a much lower altitude than the DMSP
satellites (350 versus 833 km). This provides signifi-
cantly improved spatial resolution for TMI (30 km 3
18 km at 19.3 GHz) in comparison with what was pre-
viously available. TRMM rainfall retrieval algorithms
further expanded upon the emission methods (Chang et
al. 1999), as well as the multichannel inversion–type
algorithm (Kummerow et al. 2001). The Advanced Mi-
crowave Sensing Radiometer (AMSR) was developed
by the National Space Development Agency (NASDA)
of Japan and launched aboard the National Aeronautics
and Space Administration (NASA) Aqua satellite in
May 2002. A second AMSR instrument is scheduled
for launch aboard NASDA’s Advanced Earth-Observing
Satellite (ADEOS)-II mission in late 2002. The AMSR
instruments have additional 6.6-GHz H and V channels
and a much larger antenna to obtain TMI-like resolution,
but from ;800-km orbit. The operational algorithms
selected by NASA are modifications of those used with
TRMM, while the Japanese AMSR will use a multi-
channel inversion algorithm that is based upon the al-
gorithm described by Petty (1994).

Because of the continuous radiometer improvements
with respect to the number of channels, their spatial
resolution, and their absolute calibration, algorithm de-
velopment has naturally focused only upon the latest
sensors. Relatively little effort has been devoted to find-
ing generalized algorithms, and it is, perhaps, not sur-
prising that most of the current passive microwave al-

gorithms contain empirically adjusted parameters or
procedures that depend on specific channels or channel
combinations to optimize the retrievals. Examples of
empirical parameters include rain/no-rain discrimina-
tion, particularly over land, and various forms of rain-
type classifications that invariably make use of specific
channel combinations. Gradients of Tb in the high-res-
olution channels, for instance, are useful to infer the
type for rainfall observed by the satellite. Unfortunately,
gradients are very sensitive to the spatial resolution of
the sensor and, thus, are not easily transferable from
one sensor to another. Channel-dependent parameters
include the determination of the freezing level (Wilheit
et al. 1977), which requires a 19/22-GHz combination,
or determination of the background state over ocean that
typically requires a 19/21/37-GHz combination of chan-
nels.

Efforts to produce homogeneous rainfall products for
a climatological time series are hampered by satellite-
specific assumptions and procedures. In the future,
NASA and NASDA, in collaboration with a number of
other space agencies, plan to launch the Global Precip-
itation Mission (GPM). This mission consists of a core
satellite carrying a state-of-the-art dual-frequency pre-
cipitation radar, as well as a passive microwave radi-
ometer. In addition, the GPM concept uses a constel-
lation of satellites carrying passive microwave radi-
ometers in order to achieve three hourly rainfall sam-
plings. This constellation consists of radiometers on
operational satellites such as the current SSM/I series,
as well as some that are planned specifically for the
GPM. As such, GPM is both a satellite ‘‘mission,’’ as
well as a concept designed to combine the many planned
international radiometers into a coherent framework. In
order to achieve this conceptual benefit, however, it is
imperative that algorithms be developed that allow a
coherent description of rainfall to emerge from a wide-
ranging set of sensor capabilities. Because these sensors
will have different characteristics, a reference algorithm
is necessary to address issues of consistency in the rain-
fall products among this diverse suite of sensors.

Such an algorithm is described in section 2. It is based
upon the evolving Goddard profiling algorithm
(GPROF) (Kummerow et al. 2001) concept but takes a
step backward from the latest operational algorithm to
reformulate all procedures that are sensor dependent. In
particular, it uses the concept of a ‘‘best’’ satellite,
TRMM in this case, to construct a database of three-
dimensional a priori profiles of raining and nonraining
conditions. The algorithm is constructed in such a way
that all assumptions are contained in this single a priori
database. While this does not necessarily represent an
improvement over any particular retrieval method, it
does ensure that the assumptions are independent of the
specific sensor eventually used by the retrieval. Unlike
current algorithms, one can have confidence that sys-
tematic differences between platforms must be related
to the shortcoming in the a priori database instead of
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FIG. 1. A schematic flow diagram to construct the
CRM-based database.

sensor-specific methods or assumptions. While TRMM
only covers 6388 of latitude, the GPM core satellite is
expected to be in a much higher inclination necessary
to build a truly global algorithm. Section 3 addresses
the uncertainties introduced by incomplete cloud struc-
ture information available from TRMM, and section 4
offers some insight into the ability of these retrievals
to capture differences between vertical hydrometeor
structures associated with different rainfall regimes.
Conclusions are presented in section 5.

2. The algorithm

The algorithm described here is designed to create
three-dimensional geophysical parameter fields that are
consistent with the TMI when no rain is present, and
with both the TMI and the TRMM precipitation radar
(PR) observations where the PR detects rainfall. The
latter condition is not always satisfied with the available
measurements, but this is an area of active research and
no attempt is made here to reconcile TMI and PR ob-
servations in a physical manner. Instead, the differences
are quantified, and a solution is outlined to handle less-
than-ideal input data. One can further assume that the
GPM, with its dual-frequency precipitation radar, will
provide additional radiometric information that will lead
to improved consistency between sensors in the future.

Simulations of the three-dimensional precipitation
field begin with the TMI to retrieve geophysical param-
eters in the nonraining portion of the scene. The non-
raining retrieval is needed to provide a coherent scene
description independent of sensor resolution or ability
to discriminate raining from nonraining conditions.
Over raining fields of view (FOV), PR-observed re-
flectivities are matched to reflectivities computed from
the cloud-resolving model (CRM) simulations. The
present study uses simulations from both the Goddard
Cumulus Ensemble (GCE) model (Tao and Simpson
1993), as well as the University of Wisconsin (UW)
Nonhydrostatic Modeling System (NMS) (Tripoli et al.
1992b). These are described later. The CRMs provide
a physically consistent set of fully three-dimensional
hydrometeor and latent heating profiles. The simulated
precipitation and background fields are then used to cal-
culate the brightness temperatures for any passive mi-
crowave sensor design, and Bayesian methodology is
used to retrieve rainfall for different sensors. One month
of TRMM data over two different regions in the east
Pacific Ocean and the Amazon basin are used here as
ocean and land backgrounds to construct the database
of rainfall profiles and the corresponding Tb for the dif-
ferent sensors considered in this study. Figure 1 shows
a schematic representation of the database construction.

a. The nonraining simulations

Where it is not raining, passive microwave Tb depends
upon column-integrated water vapor (WV), cloud liquid

water (CLW), and the surface temperature and emissiv-
ity. Over ocean, the emissivity depends primarily upon
the surface wind speed; over land, the emissivity de-
pends upon a variety of factors, including soil type, soil
moisture, and vegetation cover. A number of techniques
to retrieve these parameters over ocean have been de-
scribed in the literature. Wilheit and Chang (1980) and
Wentz (1997) are examples of studies over the ocean,
while Wang and Schmugge (1980) and Njoku (1999)
have made some progress over land. Although these
results could be used, they are not uniformly available
for the TMI sensor.

The nonraining retrieval is, therefore, developed here
based upon a Bayesian approach to ensure consistency
with the subsequent rainfall retrieval. For the nonraining
database, CLW and WV profiles are collected from the
cloud-resolving models when the associated surface rain
rate is less than 0.1 mm h21. A principal component
analysis is used to create various realizations of non-
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raining profiles, as well as to reduce redundant profiles.
The spatial (vertical) principal components or empirical
orthogonal functions (EOFs) can be obtained by diag-
onalizing the covariance matrix calculated by subtract-
ing out the spatial mean from the data. The vertical
profile P(z) of CLW or WV can be written as

nlayer

P(z) 5 a f (z), (1)O n n
n51

where the coefficients an are random numbers that are
uncorrelated with each other, fn(z) is the eigenvector
associated with mode n, and nlayer is the number of
vertical layers in the model. The eigenvalue of mode n,
ln is considered as the variance of random variable an:
^anam& 5 lndnm, where the angular brackets denote the
ensemble average or expected value. Moreover, the sta-
tistics of P(z) require zero ensemble average ^an& 5 0.
The random numbers an may be generated using various
probability distribution functions as long as they satisfy
the original statistics. A Gaussian distribution was cho-
sen to represent a variety of the nonraining profiles that
deviated smoothly from the original profiles. In this
case, an can be generated through a normally distributed
probability function with zero mean and variance ln.
Based on the statistics above, the nonraining profiles
are reconstructed at 10 different sea surface tempera-
tures (SST) and 10 different surface winds (W), satis-
fying the following statistics of the original profiles:

^P(z)& 5 0 and (2)
nlayer

2 2^P(z) & 5 l f (z) . (3)O n n
n51

Brightness temperatures for all combinations of SST,
CLW, WV, and W are calculated using a one-dimen-
sional plane-parallel Eddington model (Kummerow
1993). The profiles and their associated brightness tem-
peratures establish the nonraining a priori database in
the Bayesian retrieval. The Bayesian retrieval meth-
odology is then applied to retrieve the above parameters
for all TMI pixels determined as nonraining by the PR.
A qualitative comparison with the parameters derived
by Wentz (1997) indicated that the current method pro-
duces reasonable results needed in this study. Better
results may be obtained in the future from a more careful
treatment of this problem. Where the PR sees precipi-
tation, the procedure uses the PR reflectivities to de-
termine the rainfall parameters. The only complication
results from the fact that the PR footprints are smaller
than those of the TMI. If a portion of the TMI footprint
is covered by rainfall, then nonraining retrievals cannot
be performed over that pixel. The PR, however, will not
completely fill the pixel with raining structures. This
results in a small area of missing data that must be
obtained by interpolating the nonraining TMI geophys-
ical parameters into the partially raining pixels.

Figure 2 shows this procedure graphically for the wa-

ter vapor field. Other fields are treated in the same man-
ner. Figure 2a represents the TMI retrieval, Fig. 2b
shows the interpolated field, and Fig. 2c is the final
background field in which geophysical parameters have
been mapped to PR pixel locations and pixels deter-
mined to be raining by the PR have been set to missing.
Uncertainties introduced by the nonraining retrieval and
the interpolation scheme can be quantified by a few
high-resolution measurements of oceanic precipitation.

Over land the procedure is implemented in the same
fashion, but emissivity and surface temperature are al-
lowed to vary over reasonable values, while the water
vapor and cloud water are kept constant because of the
fact that they offer little contrast to the underlying sur-
face. While this procedure is simple, it does not take
into account any changes in the surface emissivity due
to varying soil characteristics or vegetation cover. Nor
does the interpolation scheme account for the possibility
that surface emissivities can change quickly, depending
upon the antecedent rainfall. Because these topics are
all the subject of current research, this study is limited
to a region in the Amazon where the background con-
ditions are relatively homogeneous.

b. The raining scene

Precipitating areas are easily identified by the PR. If
a rain signal is detected, the rain profile that best fits
the PR reflectivity profile is selected from a set of pre-
computed CRM simulations. Only those profiles that
correspond to CRM simulations with the observed sur-
face temperature are considered. The reflectivity of the
cloud model profiles was obtained by computing single
particle backscattering properties based upon Mie the-
ory and assuming the same drop size distribution (DSD)
used in the CRMs. The models used in this study are
the GCE and the UW NMS. A description of the GCE
model can be found in Tao and Simpson (1993). The
cloud microphysics includes a two-category liquid water
scheme (cloud water and rain), and a three-category ice
phase scheme (cloud ice, snow, and graupel). The dis-
tributions of rain, snow, and graupel are taken to be
inverse exponentials of the form prescribed by Marshall
and Palmer (1948), but with an intercept dictated by the
physical parameterizations. The horizontal resolution of
these models varies from 1 to 2 km, while the vertical
coordinate is 500 m in the lower troposphere.

The second model used is the UW NMS described
by Tripoli (1992b). Aside from differences in the dy-
namical assumptions in the model, the UW NMS con-
siders four classes of ice: graupel, pristine crystals, snow
crystals, and aggregates that need to be treated differ-
ently from the GCE profiles. A detailed description of
these ice categories and their interaction may be found
in Tripoli (1992a). Horizontal and vertical coordinates
are similar to those of the GCE simulations.

Given the hydrometeor profiles from the cloud-re-
solving models, the radar reflectivity factor at each level
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FIG. 2. Simulation of a nonraining scene. (a) Columnar water vapor retrieved from the TMI data, (b)
the interpolated background field is shown and (c) the background field is transformed to the PR resolution.
The raining region on the PR swath is indicated by dark black areas.

for a nadir-viewing radar at the PR frequency (13.8
GHz) is computed from (Meneghini and Kozu 1990)

4l
Z 5 s (D)N(D) dD, (4)E b5 2p |K | D

where l is wavelength, K 5 (m2 2 1)/(m2 1 1) is the
dielectric factor of the scattering particle, m is the com-
plex index of refraction, sb(D) is the backscattering
cross section, as a function of the particle’s effective
diameter, and N(D) is the number density of particles.
These reflectivities were compared with the attenuation-
corrected reflectivities available from the PR. In this
idealized study, the profiles with the smallest root-mean-
square difference between observed and CRM-comput-
ed reflectivity is selected to represent that PR pixel.
Representative examples of the matched reflectivity pro-
files and associated hydrometeor profiles from the cloud
model simulations are shown in Fig. 3. Differences in
the observed and matched reflectivity profiles are due

to the discrete number of CRM profiles. Because the
horizontal scale is in dBZ rather than Z, however, mis-
matches for small dBZ values are of little consequence
in the hydrometeor profiles.

Figure 4 also describes the overall agreement between
the observed and matched (simulated) reflectivity pro-
files for a database over the east Pacific. The details of
the database will be presented in the following section.
In Fig. 4, the observed reflectivity profiles are separated
at 5-dBZ bins based on surface reflectivity and then
convective and stratiform precipitation. For each inter-
val, the averages for the observed and simulated re-
flectivity profiles are obtained (thick dotted and solid
lines, respectively). The mean deviation between the
observed and simulated profiles is computed at each
layer (thin dotted line). The mean observed deviation
from the average observed profile, which may show the
natural variability of the profiles, is also presented for
the reference of the matching skill (thin solid line). For
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FIG. 3. Two examples of (right) matched reflectivity profiles from PR and cloud-resolving model
simulations and (left) corresponding hydrometeor profiles from cloud models.

every interval of stratiform precipitation, the computed
reflectivity profiles seem to match well with the ob-
served profile below the melting layer between 4 and
;4.5 km. Despite the fact that the mean profiles are
quite similar to each other, the mean deviations between
the computed and observed profiles are smaller than the
natural variability of observations below the layer.
Above the layer, the matching accuracy tends to be de-
graded. The matching for convective precipitation
shows similar results. This shortcoming in the matching
procedure will be discussed in section 4.

The above-mentioned procedure introduces a poten-
tial error in that the PR attenuation-corrected reflectivity
makes certain DSD assumptions that are potentially in-
consistent with the DSD assumptions in the CRM. These
differences are minor and are thought to be acceptable
for a simulation study. For an operational algorithm, the
procedure should probably be replaced by one in which
the actual PR observations, including the total path at-
tenuation (when deemed reliable) are matched. For this

method to incorporate a quantitative error estimate, the
deterministic procedure employed here must further be
replaced by a probabilistic one, where a family of pro-
files that are consistent with the radar observations is
derived. In addition, the radiometer itself could be used
to eliminate the potential profiles that are inconsistent
with the radiometric measurements, thus, ensuring that
the radar-only, radiometer-only, and radar–radiometer
algorithms all start with the same a priori database. For
this simplified study, the profiles selected from the
cloud-resolving model, and their associated surface rain-
fall rate, are assumed to be the truth. Brightness tem-
peratures calculated from the raining scene turn out to
be reasonably close to the actual observations, providing
confidence in the procedure if all the uncertainties in
the matching procedure are properly accounted for.

c. The databases
The above procedure, once repeated for sufficient sat-

ellite orbits [small sections of the east Pacific (58–158N,
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FIG. 4. Mean observed and simulated reflectivity profiles at the different surface reflectivity intervals and precipitation types [(top) stratiform,
(bottom) convective] for a database over the east Pacific, indicated by thick dotted and solid lines, respectively. The mean deviations between
the observed and simulated profiles are represented by thin dotted lines. The mean observed deviations from the mean observed profiles are
also indicated by thin solid lines.

1508–1208W) for ocean background, and the Amazon
(208–58S, 708–408W) for land background during De-
cember 1999 were used in this study], creates a three-
dimensional distribution of hydrometeor profiles with
4-km resolution that are consistent with TMI-observed
Tb in the nonraining areas, and consistent with the PR
reflectivities when rain is present. Radiative transfer
computations were applied at this 4-km resolution using
a plane-parallel Eddington approximation (Kummerow
1993). While three-dimensional radiative transfer so-
lutions are available, it was felt that the extra compu-
tational resources were not warranted for this initial
study, given that only synthetic radiances would even-
tually be considered.

The a priori database for each of the sensors consid-
ered in this study is constructed from the above fields.
Hydrometeors were averaged for 3 km 3 3 km radar
fields of view corresponding to 12 km 3 12 km hy-
drometeor profiles. This dimension determines the res-
olution of the retrieval. Because radiometer sensor
ground resolutions increase linearly with frequency,
there is no unique resolution at which hydrometeors

should be retrieved for each sensor. A fixed 12-km hy-
drometeor resolution was selected in this study in order
to directly compare results from each of the sensors. In
practice, different resolutions can be employed for each
sensor based upon its characteristics. The corresponding
Tb were computed by assuming a circular aperture and
a Gaussian antenna gain function for each of the sensors
considered in this study. This produces FOV’s that are
within about 1 km of the actual resolutions cited for the
existing sensors. The weighting functions were centered
on the 12 km 3 12 km hydrometeor profile.

The construction of the a priori database is straight-
forward, particularly in the current study that deals only
with synthetic radiances. Real applications must con-
sider the uncertainties discussed in section 3. In partic-
ular, we note that the current method for generating the
a priori database assumes that the combination of TMI
and PR can retrieve the relevant physics needed to com-
pute Tb at other frequencies. This is not the case for
frequencies such as the 60-GHz oxygen absorption
band. These frequencies should not be included because
they respond primarily to the atmospheric temperature
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FIG. 5. The TRMM PR rain rate (algorithm 2A25), rainfall retrieved
from the operational TRMM TMI algorithm (2A12), and the current
parametric retrieval algorithm; ^R& denotes the rain rate averaged over
the PR swath.

structure that is not observed by the TMI and PR com-
bination.

d. The retrieval

Once the database is constructed, a Bayesian retrieval
methodology is used to select those profiles that are
consistent with the observations. Bayesian methodolo-
gies for microwave rain estimation are well covered in
the literature (e.g., Kummerow et al. 1996; Olson et al.
1996; Marzano et al. 1999). The Bayesian methodology
dictates that channel weights be proportional to a Gauss-
ian function whose width is determined by the uncer-
tainty in the forward model and the radiometric noise.
Because some of the sensors are hypothetical, as well
as the difficulties associated with quantifying retrieval
performance without adequate ground-based observa-
tions, only synthetic retrievals are considered here. It
is, therefore, assumed that the PR–CRM profile repre-
sents the truth, and the only uncertainty is the noise
(NEDT) of the radiometer itself. The present retrieval
is, thus, particularly simple. Sensor noise is taken to be
independent of channel and 0.5 K in the present study.
For normally distributed errors, a Gaussian weight is
assigned to each profile based upon root-mean-squared
difference between observed Tb and that computed for
each profile in the a priori database. The width of the
Gaussian function is determined from the mean obser-
vational error, which is simply the sum of independent
0.5-K channel noise figures.

The only free parameters, and, thus, the nomenclature
of parametric retrieval algorithm, are the sensor speci-
fications themselves. The sensor dependence is fully
specified by (a) the frequency and resolutions needed
to construct the sensor-specific database from the geo-
physical parameters derived by the core satellite, and
(b) the sensor noise characteristics needed by the re-
trieval itself.

e. Retrieval results

Because of the simplifications needed to remove all
instrument dependencies in the current scheme, one
might expect a radical departure from the current meth-
odologies that are optimized to specific sensors. How-
ever, as indicated in Fig. 5, a comparison of the rainfall
estimated from this retrieval and the TRMM operational
level-2 algorithms (2A25 for PR and 2A12 for TMI)
shows that the simple parametric algorithm developed
here has adequate realism relative to the operational
algorithms that have been optimized over time for each
individual sensor.

The performance of various radiometers can now be
tested. In this study, we consider a TMI with a 61-cm
dish in a 350-km orbit (hereinafter TMI-350-61), a TMI
with a 61-cm dish in a 600-km orbit (hereinafter TMI-
600-61), an SSM/I with a 61-cm dish in a 600-km orbit
(hereinafter SSM/I-600-61), a TMI with a 100-cm dish

in a 400-km orbit (hereinafter TMI-400-100), an SSM/
I with a 61-cm dish in a 833-km orbit (hereinafter SSM/
I-833-61), and the cross-track-scanning constellation
microwave radiometer (CMR) being developed for
GPM, with a combination of channels at 10, 19, 37, and
85 GHz. The CMR is assumed to have a 100-cm antenna
and a 600-km orbit. Because microwave radiometers are
diffraction limited, the ground resolution is inversely
proportional to the orbit altitude.

1) OCEAN BACKGROUND

The performance of the radiometers is evaluated for
Tb generated over the east Pacific. As outlined previ-
ously, an independent set of orbits is used to generate
the synthetic Tb corresponding to each assumed sensor.
The PR–CRM-derived rainfall represents the truth in
this study. Rain detection statistics, as well as rain bias,
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FIG. 6. Two-dimensional histogram (true vs retrieved rain rates) from synthetic rainfall retrievals for the different radiometer specifications
with the nadir angle of 458 over ocean background. Color in square box indicates frequency in log scale, as denoted at bottom.

correlation, and rms statistics for each sensor specifi-
cation are computed. Figure 6 and Table 1 show retrieval
performance of TMI, SSM/I, and CMR at different al-
titudes with the nadir angle of 458, which resembles the
viewing geometry of TMI and SSM/I. Both the table
and figure show that high spatial resolutions produce
higher-quality retrievals. Higher spatial resolutions re-
duce the inhomogeneity of rain within a FOV, and thus
improve the physical relationship between rainwater
content and Tb. The effect of using a lower orbit can
be clearly seen in the results from two TMI sensors

(Figs. 6a,b) or SSM/I sensors (Figs. 6c,e) at different
altitudes. The third experimental sensor (SSM/I-600-61)
is designed to be identical to the second sensor (TMI-
600-61), but without the 10-GHz channels (Fig. 6c).
Retrieval statistics of this design do not seem to differ
significantly from those of the TMI-600-61 with all
channels, except for a slightly larger bias and rms. This
result suggests that the ignored low-frequency channels
(10 GHz) are not important at this relatively coarse res-
olution. The reason may be that these low-frequency
channels become important primarily when the 19-GHz
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TABLE 1. Statistics corresponding to synthetic rainfall retrievals for various radiometers with the nadir angle of 458 for oceanic background.
Numbers in parentheses indicate percent value of true mean. Statistics represent 67 000–70 000 retrievals (depending upon the sensor) with
12-km spatial resolution.

Sensor name

Mean

True Retrieved

Std dev

True Retrieved Bias Rms Correlation

TMI-350-61
TMI-600-61
SSM/I-600-61
TMI-400-100
SSM/I-833-61

1.307
1.381
1.381
1.307
1.385

1.278
1.393
1.397
1.274
1.401

1.973
2.044
2.044
1.973
2.101

1.751
1.717
1.713
1.831
1.720

20.029 (2.23)
10.012 (0.88)
10.016 (1.16)
20.033 (2.50)
10.015 (1.11)

0.783 (59.9)
1.016 (73.6)
1.023 (74.1)
0.728 (55.7)
1.133 (81.8)

0.92
0.87
0.87
0.93
0.84

CMR-10-19-37-85
CMR-10-37-85
CMR-19-37
CMR-19-37-85

1.307
1.307
1.307
1.307

1.282
1.281
1.289
1.287

1.973
1.973
1.973
1.973

1.763
1.671
1.741
1.760

20.025 (1.94)
20.026 (2.01)
20.018 (1.37)
20.020 (1.52)

0.777 (59.5)
0.891 (68.2)
0.844 (64.5)
0.805 (61.6)

0.92
0.89
0.90
0.91

TABLE 2. Same as in Table 1, but for land background.

Sensor name

Mean

True Retrieved

Std dev

True Retrieved Bias Rms Correlation

TMI-350-61
TMI-600-61
SSM/I-600-61
TMI-400-100
SSM/I-833-61

2.375
2.380
2.380
2.343
2.343

2.180
2.281
2.295
2.142
2.224

3.189
3.119
3.119
3.207
3.156

2.408
2.261
2.172
2.382
2.041

20.195 (8.20)
20.100 (4.18)
20.085 (3.58)
20.202 (8.61)
20.119 (5.09)

1.782 (75.0)
1.934 (81.3)
2.061 (86.6)
1.782 (76.1)
2.147 (91.6)

0.84
0.79
0.75
0.84
0.74

CMR-10-19-37-85
CMR-10-37-85
CMR-19-37
CMR-19-37-85

2.375
2.375
2.375
2.375

2.171
2.188
2.252
2.206

3.189
3.189
3.189
3.189

2.455
2.447
2.418
2.369

20.204 (8.60)
20.187 (7.88)
20.123 (5.20)
20.170 (7.14)

1.767 (74.4)
1.808 (76.1)
1.882 (79.2)
1.849 (77.9)

0.84
0.83
0.81
0.82

channel begins to saturate, which is less likely with the
larger FOV. The last four designs are devoted to quan-
tifying the performance of CMR with various combi-
nations of channels. The absorption-oriented design
with only two frequencies, 19 and 37 GHz (hereinafter
CMR-19-37, Fig. 6h), seems to retrieve rainfall as well
as CMR with four frequencies, 10, 19, 37, and 85 GHz
(hereinafter CMR-10-19-37-85, Fig. 6f), and actually
shows slightly better performance than CMR at 10, 37,
and 85 GHz (hereinafter CMR-10-37-85) (Fig. 6g). Fig-
ure 6i examines a sensor specification by adding high-
frequency channels (85 GHz) to CMR-19-37. This sensor
design turns out to perform only slightly better than the
CMR-19-37. Bias statistics that may be an important fac-
tor from a climatological perspective appear all to be
very small (;1%) and appear to be in the noise.

2) LAND BACKGROUND

Similar retrievals and results are presented for the
land background cases in Fig. 7 and Table 2. As can be
seen, correlations are significantly lower, but biases are
still relatively small. The decrease in correlation is a
reflection of the poor radiometric information that is
available over land, where only scattering signals are
readily discernable over the radiometrically warm sur-
face. Closer inspection of Fig. 7 also reveals the ten-
dency of the radiometers to overestimate light rain,
while underestimating the heavier precipitation. This be-

havior can also be explained by the loss of radiometric
signal. In the limit that no radiometric signal is avail-
able, the Bayesian scheme would always retrieve the
mean of the a priori database. As such, it is not sur-
prising that the biases are still small, but that the quality
of the retrieval is decreased significantly.

The relative merits of different sensors over land may
also be less reliable than over oceans because of the
simplified emissivity model employed in this study. The
model does not correctly represent the true variability,
which in practice all but destroys any correlation be-
tween rainfall and the lower-frequency channels that are
sensitive to land surface properties. The relatively good
result of the CMR-19-37 (Fig. 7h) may be an artifact
of this simplification that generates an artificially ho-
mogeneous surface against which even small scattering
depressions can be observed. Results are more reliable
at high-frequency channels, which are less sensitive to
the surface properties.

3. Errors introduced by the cloud-resolving model

In order to construct the fully three-dimensional hy-
drometeor profiles needed by the parametric retrievals,
it is necessary to use a CRM to convert PR reflectivities
into a geophysical set of parameters because the single
observed quantity, Z, is not sufficient to predict the ex-
tinction, single scattering albedo, and asymmetry factor
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FIG. 7. Same as Fig. 6, but for land background.

of the raining volume needed by the passive microwave
radiative transfer code.

Figure 8 shows scatter diagrams of the computed and
observed Tbs at nine channels for the east Pacific. The
observed Tb is obtained directly by the TMI for the same
pixels, without going through the CRMs and radiative
transfer equations. As such, the directly observed data
are of little use to the parametric algorithms because
this data cannot be readily transformed to other channels
or viewing geometries without going through the pro-
files provided by the CRMs. Nonetheless, these data are

useful to look at the errors introduced by the CRMs.
The two Tbs agree rather well for the emission-based
channels (10–37 GHz) but disagree rather substantially
at 85 GHz. This may be caused by the higher reflectiv-
ities of liquid drops relative to ice particles of the same
size. Because the matching procedure uses Z to find the
most suitable match, the reduced weight assigned to ice
particles could cause some of this disagreement. In-
creasing the reflectivity by 7 dBZ (Battan 1973) above
the freezing level in order to create a more equal weight-
ing between liquid and ice hydrometeors, however, did
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FIG. 8. Scatter diagrams of the brightness temperatures from the simulated database (DB-PR–CRM) and observed database
(DB-observations) in the east Pacific.

not change the general results presented in Fig. 8. In
both cases, it appears that when the liquid portion of
the profile is matched, the CRMs consistently specify
ice particles of an incorrect size and density, which in
turn leads to a lower than observed Tb. This divergence
between CRMs and observations is consistent with the
study by Viltard et al. (2000) that also showed signif-
icant disagreement between PR and TMI at the scatter-
ing frequencies.

A number of steps can be taken to alleviate this prob-
lem. The simplest is to use the lack of fit between model-
computed Tb and the observed Tb as a measure of the
uncertainty in the forward model, which can then be
used directly by the Bayesian retrieval methodology. In

practice, this would imply that the 85 GHz would be
generally ignored by the retrieval algorithm. This so-
lution, however, is not particularly attractive because
Fig. 8 clearly shows that a useful relation between 85-
GHz Tb and surface does exist in nature if not in the
CRMs. A better choice would be to continue the de-
velopment of the CRM physics to ensure that simula-
tions properly match, in an average sense, the observed
relationship between ice scattering and the rainfall col-
umn. Alternatively, an approach could be developed to
use the 85-GHz Tb from TMI to add an additional con-
straint to the profile selection procedure. There are a
number of issues related to differences in the FOV size
and incidence angles that must be resolved in this ap-
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FIG. 9. Mean reflectivity profiles from PR for the east and west
Pacific during Dec 1999. The PR profiles with 35 6 1 dBZ in surface
layer are averaged.

TABLE 3. Comparison of mean statistics of the parameters between the two databases: freezing-level height (FL), the ratio of total columnar
rainwater (S Wi) to surface rainwater (Wsfc); and the coefficient of variation (s/m) at the FOVs of two emission channels and two rain-
intensity categories.

FL (m)
S Wi

Wsfc

s/m at 10-GHz FOV

,5 mm h21 .5 mm h21

s/m at 19-GHz FOV

,5 mm h21 .5 mm h21

DB-East
DB-West

4230
4655

1.19
1.36

1.51
1.76

1.30
1.90

1.25
1.42

1.05
1.43

proach. In this study, because the PR–CRM database is
assumed to be true, no adjustments are made to the CRM
ice microphysics to bring them into better agreement
with the observations.

4. Retrieval uncertainties and regional differences

The method by which the a priori database is con-
structed allows one to construct regional databases that
reflect differences in PR observed profiles within each
region. This allows us to explore the extent to which
current passive microwave algorithms, based upon a
universal a priori database, can distinguish rainfall char-
acteristics in different regimes. A second oceanic da-
tabase centered in the west Pacific (28–128N, 1308–
1608E) was constructed for this purpose. Berg et al.
(2002) documented the climate regime differences be-
tween these regions. Differences can also be seen in the

mean attenuation-corrected PR profiles corresponding
to a surface echo of 35 6 1 dBZ as shown in Fig. 9.

Figure 10 shows the Tb-to-rain-rate relations at the
four different frequencies (horizontal polarization) as
well as its standard deviation within the rain interval
obtained from the PR and CRM simulation-based da-
tabases (DB) for the east (DB-East) and west (DB-West)
Pacific Ocean. The difference in the relationship be-
tween the two regional databases is prominent at the
frequencies where emission dominates. One can note
that rain-layer thickness differences, seen in Fig. 9, have
a large impact on the two different concave relations
below about 5 mm h21 in the emission channels (10 and
19 GHz). The rationale is presented in Table 3. The east
Pacific is characterized by a lower freezing level but a
greater ratio of total column rainwater (S Wi) to surface
rain water (Wsfc) than those of the west Pacific. Taken
together, these properties will result in warmer Tbs with
the same rain intensity for the west Pacific than the east,
and it appears to be applicable to the lower rain rates
up to about 5 mm h21. However, as rain intensity in-
creases, the coefficient of variation or inhomogeneity
factor, the ratio of standard deviation to mean rain rate
within a radiometer FOV, becomes much larger for the
west Pacific: 1.90 and 1.43 at the rain rates greater than
5 mm h21 for 10- and 19-GHz FOVs, respectively. The
larger inhomogeneity in the west Pacific significantly
weakens the physical relation between increasing the
liquid water content and microwave radiance. It suggests
that rainfall estimates based on emission channels can
have significant variability superimposed on the mean
beam-filling correction discussed by Wilheit (1986).
One can also note that even when the inhomogeneity
factors are similar at both low and high rain rates, as
observed in the west Pacific (1.42 and 1.43 at 19-GHz
FOV), its effect is more prominent at the higher rain
rates. This is related to the higher nonlinearity at the
high rain rates in the relationship resulting in a greater
averaging bias within the FOV. The relationships at 37
GHz for the east and west Pacific are rapidly saturated
and look fairly similar. At the scattering frequency (85
GHz), where the rain inhomogeneity is not significant
due to the high spatial resolution, the brightness tem-
perature seems to have little relation to the surface rain-
fall. This, however, is due primarily to the PR–CRM
shortcomings as the actual Tb for the TMI sensor did
show significantly greater correlations as shown in Fig.
8. While not shown here, the trend between surface
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FIG. 10. Relationship between Tb and rain rate (R) at four different horizontally polarized channels of
TMI obtained from the simulated databases over the east and west Pacific during Dec 1999.

TABLE 4. Same as Tables 1 or 2, but with only TMI-350-61 for the east and west Pacific separately.

Sensor name

Mean

True Retrieved

Std dev

True Retrieved Bias Rms Correlation

TMI-350-61 East
TMI-350-61 West

1.307
1.479

1.278
1.348

1.973
2.211

1.751
1.788

0.029 (2.23)
0.131 (8.88)

0.783 (59.9)
1.113 (75.3)

0.92
0.87

rainfall and observed 85 GHz did not vary significantly
between the two regions.

In order to quantify the advantage of building regional
databases instead of global ones, three experiments are
performed. The first consists of using the separate da-
tabases for the east and west Pacific, and running re-
trievals separately for each location. The results are pre-
sented in Table 4. Note that the results for the east Pacific
are those already presented in Table 1, but repeated here
for clarity. As can be seen, the composite statistics for
the west Pacific show a somewhat lower retrieval per-
formance. This is mainly because the radiometric sig-

nature of the west Pacific has a smaller dynamic range
due to the greater rainfall inhomogeneity (see Fig. 10).

The second experiment combines the databases from
the east and west Pacific into a single entity, and re-
trievals for both the east and west Pacific use this com-
mon database. Results from this retrieval are presented
in Table 5. Retrievals in the east Pacific are degraded,
while those over the west Pacific remain largely un-
changed. This suggests that retrievals for a region, such
as the east Pacific, with a large dynamic response of Tb

to surface rainfall (Fig. 10) can be easily corrupted by
some inappropriate information. Adding corrupt infor-
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FIG. 11. Mean reflectivity profiles for the east
and west Pacific (similar to Fig. 9), but now re-
trieved profiles with (a) correct databases (b) com-
bined databases, and (c) reversed databases.

TABLE 5. Same as Table 4, but for ‘‘combined databases.’’

Sensor name

Mean

True Retrieved

Std dev

True Retrieved Bias Rms Correlation

TMI-350-61 East
TMI-350-61 West

1.307
1.479

1.112
1.349

1.973
2.211

1.622
1.789

0.195 (14.92)
0.130 (8.77)

0.953 (72.9)
1.113 (75.3)

0.88
0.87

mation to the west Pacific database has little impact on
those retrievals because the dynamic response was never
very good.

The final experiment is one in which the databases
from the east and west Pacific are deliberately switched
so that the Tbs in the east Pacific are interpreted using
the database created in the west Pacific and vice versa.
These results are presented in Table 6. In addition, Fig.

11 shows the mean vertical profile of computed reflec-
tivity for the east and west Pacific for the three scenarios
discussed above. The vertical profiles of reflectivity re-
trieved with the exact a priori information turn out to
include quite similar characteristics of observations for
both the regions (Fig. 11a). Using the combined data-
bases (Fig. 11b), the difference between the east and
west Pacific does not appear to be retrieved as clearly
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TABLE 6. Same as Table 4, but for ‘‘reversed databases.’’

Sensor name

Mean

True Retrieved

Std dev

True Retrieved Bias Rms Correlation

TMI-350-61 East
TMI-350-61 West

1.307
1.479

1.107
1.557

1.973
2.211

1.622
1.792

0.200 (15.30)
20.078 (25.28)

0.955 (73.1)
1.255 (84.8)

0.88
0.82

as in the previous case, while inappropriate databases
seem to produce incorrect vertical information (Fig.
11c).

From these simple experiments, it is clear that the
observed brightness temperatures, even for relatively
high-quality sensors like the TRMM TMI, do not re-
trieve all information independent of the a priori data-
base. It explains our previous assertion that the quality
of the synthetic retrievals is partially due to the a priori
database significantly restricting the profiles available
to the retrieval algorithm to only those that are actually
observed in a particular region. It further demonstrates
that the performance of radiometers can vary regionally
depending on how well the radiometric signature is re-
lated to precipitation.

Regional databases become somewhat more difficult
to implement in an operational scenario. The simplest
notion is to define a priori databases on a regular lati-
tude/longitude/season grid. The disadvantage of this ap-
proach is that grid boxes over regions without much
rain would have to be blended with neighbors before a
sufficiently diverse a priori database emerges. The best
way to implement this without corrupting regional da-
tabases with profiles from potentially different regimes
needs further investigation.

5. Conclusions

In this paper, we demonstrated that the information
from TRMM PR can be used in conjunction with cloud-
resolving models to construct a parametric framework
for passive microwave retrieval algorithms of rain from
any sensor. All sensor configurations examined in this
study were unbiased relative to each other. Correlations
and rms errors were related to sensor capabilities as
expected. While agreement between computed Tb and
those observed directly by the TMI were generally good,
this method did reveal some systematic shortcomings
in the CRMs. These shortcomings, however, should not
be generalized, as the study can only be conclusive in
the particular grid boxes of the east and west Pacific.
Differences between computed and observed Tb, as
shown in Fig. 8, should be addressed before an algo-
rithm such as the one described here is used operation-
ally.

When the parametric retrievals were constrained by
an a priori database constructed for the appropriate re-
gion and time, results for all the sensors considered here
produced unbiased rainfall results. Spatial resolution
was seen as the most important factor determining ran-

dom errors. Indeed, for marginal spatial resolutions, the
study showed that adding a 10-GHz channel did not
improve the retrieval quality. The large FOV of the
lower-frequency channels appears to be of little utility
until the 19-GHz channel becomes saturated. This is
more important for higher-resolution sensors than it is
for the relatively coarse-resolution sensors like the cur-
rent SSM/I. Advances in surface emissivity modeling
may be needed before the results shown over land can
be made as robust as they are over the oceans.

The regional nature of the a priori database developed
here allowed us to compare retrievals using location-
specific databases to those achievable with only a uni-
versal database. Results showed that location specific
databases can improve results significantly. Current re-
search aimed at improving CRM simulations, coupled
with improved observational capabilities proposed for
the GPM core satellite, can only improve upon the re-
sults shown here.
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