


Cover Picture 

The cover picture shows retrieved land surface types using the SSWI land surface typing 
algorithm given in Section 9.1. The Mollweide equal-area projection is composed of SSWI 
measurements from 64 consecutive revolutions of the DMSP satellite over a four day period 
starting September 21, 1987. The surface of the earth has been divided into 17 separate surface 
categories. Each of the categories has been assigned a unique color to produce this image. The 
land surface types are as follows. Starting at the left end of the color bar, medium blue 
represents the land surface type of standing water or flooded conditions. Examples of this type 
can be seen in Bangladesh, Nepal, and Thailand. The dark green represents dense vegetation, 
as seen in parts of Brazil and central Africa, followed by light green which is dense 
agriculturallrangeland vegetation and can be seen in Argentina and the east coast of the United 
States. Dry arable soil is next, shown as beige, followed by moist soil colored brown, semi-arid 
surfaces tan and desert yellow. Dry arable soil can be seen in Angola, Zambia, and the northern 
Great Plains of North America. Examples of moist soil can also be seen in the northern Great 
Plains of North America. Semi-arid conditions exist along the Andes in South America and 
north of the Kalahari Desert in Africa. Desert surface types are seen in the Sahara, the Arabian 
Peninsula, Australia and other regions of the world. These are followed by precipitation over 
vegetation shown as blue gray and seen in small regions in South America and central Africa 
and precipitation over soil shown as turquoise and seen, for example, in southern Africa. 
Composite vegetation and water is shown as light blue and is seen in large regions of South 
America and Africa, composite soil and waterlwet soil surface is shown as red and is seen in 
Canada and other regions. The land surface types finish with three snow types. Dry snow is 
white and is seen in central Asia, wet snow is light gray which can also be seen in central Asia, 
and refrozen snow, which is medium gray, can be found in Greenland. The black areas in 
Greenland and Antarctica are regions where a land surface type could not be identified. The 
ocean is divided into 2 categories. Dark blue which represents open ocean and dark gray which 
is sea ice. The final category is violet which designates the coastal regions. 
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7.0 WATER VAPOR AND CLOUD WATER VALIDATION 

7.1 INTRODUCTION 

Two of the many useful geophysical parameters that the SSWI can measure are the 
amount of water vapor and the amount of cloud liquid water between the ocean's surface and 
the top of the atmosphere. The water content of the atmosphere is very important for 
meteorology, climatology, and hydrology. The evaporation of water from the ocean surface and 
its condensation into clouds and precipitation is an important energy transport mechanism for 
the dynamics of the atmosphere. The amount of liquid water in clouds affects the incoming and 
outgoing radiative fluxes. The water that eventually falls as precipitation over land comes from 
the ocean. 

The objectives of this investigation were to validate the initial or Hughes algorithms for 
total precipitable water and cloud liquid water and, if necessary, derive a new or improved 
algorithm. The Hughes algorithms (see [I]) are divided into eleven (11) climate codes per 
hemisphere. Each climate code represents a set of coefficients for a particular latitude zone and 
season. There are three distinct sets of coefficients for the retrieval of water vapor and nine for 
the retrieval of cloud liquid water over the ocean. For the retrieval of cloud liquid water over 
land. there are eleven distinct sets of coefficients. 

Validating the Hughes algorithm required the acquisition of surface measurements from 
a variety of latitude zones and seasons. For the total water vapor validation, radiosonde data 
from small island stations and the few remaining weather ships was collected. Initially a list of 
49 potential stations was compiled with size and latitude being the only considerations. Once 
the various match-up criteria were invoked, data from only 19 stations were used. The criteria 
were that the satellite observation and radiosonde must be coincident within 2 hours and 2 
degrees of latitude and longitude. These radiosonde observations were collected from National 
Meteorological Center (NMC) files, integrated to obtain the total precipitable water, and 
matched with the satellite data. The period of collection of data was from June, 1987 to August, 
1988. 

The selection of sites for surface measurements is important in that the launching site, 
be it ship or island, must be sufficiently small so that it does not affect the radiometer measure- 
ments. 

Initially it was planned that surface observations of cloud liquid water would be obtained 
from upward looking radiometers and aircraft. Due to delays in the launch of the SSMII, it was 
not feasible to acquire aircraft data. Data for the cloud liquid water determinations over the 
ocean were taken by NOAAIWave Propagation Laboratory (WPL) personnel from San Nicholas 
Island as part of Project FIRE and by University of Massachusetts (UMass) personnel from 
Kwajdein Island. Data over land were taken by NOAAIWPL from the four stations that make 
up the Colorado remote profiling network. 



NESDIS contracted with S. M. Systems and Research Corporation (SMSRC) of 
Landover, MD, to develop and run the necessary software to do the comparisons and the 
algorithm refinement. 

Since the preparation of material for Volume I of the CalJVal Team Final Report 
additional analysis has been done and additional data have been acquired. The continuing 
process of algorithm development and refinement has led to some minor changes in the 
coefficients used to derive total precipitable water and completely different algorithms for cloud 
liquid water. Additionally we are now expressing our results in the more commonly used kg/m2. 

7.2 DATA PROCESSING 

The data handling procedures described in this section were devised, encoded, and 
executed by SMSRC personnel. The details are given in [2]. 

7.2.1 Data Handling - Total Precivitable Water 

1. Radiosonde Observation (Raob) Collection 

Raob reports were collected daily from the NMC ADPUPA files for 00 UTC and 12 
UTC for the selected radiosonde stations. The job was submitted operationally beginning June 
23,1987, and ending August 3, 1988. All reports found for the selected stations were picked 
up without regard to quality of data. 

2. Surface Report Collection 

Reports of surface conditions from the radiosonde stations were picked up immediately 
after the raob collection job finished executing. This job was submitted operationally from July 
3, 1987, to August 3, 1988. 

3. Collection of SSMII Data 

Matches between SSMII data and collected raob reports were predicted using a version 
of SMIOPS which runs on the NAS 9050. Based on these predictions selected SSMII revolu- 
tions were requested from NRL. When data were received, the tapes are mounted on the 
system. Those SDR files on tape which contained desired data were read and the data (bright- 
ness temperatures) were unpacked and stored in an 'SSMII temporary file'. 

4. Matching between SSMII Data and Raob Data 

A match program was run which read the SSMII temporary file and the raob holding file 
and found the four closest SSMII footprints to each raob report. All matches had to be within 
2 hours and 2 degrees latitude and longitude of the raob station. 



5. Calculation of Total Precipitable Water 

A program, which was based on the FNOC code provided to us, read the matches from 
the match file, and calculates the total precipitable water values from the SSM/I brightness 
temperatures. Values which were outside specified limits were set to 12.70. Values which 
could not be calculated due to presence of rain or ice were set to 12.75. 

6. Quality Control 

Resulting matches were printed in a summary report. Matches which have SSMII 
retrieved or calculated values of total precipitable water which were unreasonable were investi- 
gated. If necessary, these matches were removed. Raobs were screened for missing surface 
pressure values. 

7. Statistics 

Means of raob and SSMII retrieved precipitable water values, the bias, and RMS errors 
between them were calculated. 

8. Regression 

Raob - retrieval matches were used in a regression to obtain total precipitable water as 
a function of brightness temperatures. 

7.2.2 Data Handling - Cloud Liauid Water 

1. Observation Collection 

Cloud liquid water observations were received from the various observation sites. The 
data were then reformatted into the 'SSMII temporary file' format. 

2. Collection of SSMII Data 

Matches between SSMII data and cloud liquid water observations were predicted. All 
SSMII data within 2 degrees latitude and longitude of the observation sites were collected. 

3. Matching between SSMII Data and Observations 

A match program was run which picked the four SSMII retrievals which were closest to 
the observation site. Then the observation which was closest in time to the SSMII overpass was 
chosen for the match. 



4. Calculation of Cloud Liquid Water 

A program, based on the FNOC code, read the match file and calculated the cloud liquid 
water value using the SSMII brightness temperatures. 

5. Statistics 

Means and RMS errors between the observed and retrieved cloud liquid water values 
were calculated. 

7.3 TOTAL PRECIPITABLE WATER (WATER VAPOR) 

7.3.1 Surface Data Sources 

The major source of surface data for the validation of the SSMII determinations of total 
precipitable water was the international radiosonde network. The pressure, temperature, and 
humidity data from the radiosondes were integrated numerically to give a value which could be 
compared with SSMII values. It was required that the radiosonde station be a small island or 
one of the remaining weather ships. Small is defined as less than 18% of the instantaneous 
field-of-view (IFOV) of the 19 GHz channels. Initially a list of 49 possible stations was 
prepared. These stations are shown in Table 7.1. Most radiosondes are launched at 0 and 12 
UTC, while the SSMII has an approximately 0600 LST ascending node. Of the 49 possible 
stations, matches from only 19 were obtained. The stations indicated with an asterisk are the 
''match-up" stations. To be considered a "match-up" it was required that the radiosonde and 
satellite measurements be coincident within 2 hours and 2 degrees of latitude and longitude. 

The radiosondes measure pressure, temperature, and humidity at various levels in the 
atmosphere. These measurements are then transmitted worldwide to various meteorological 
centers, including the U. S. National Meteorological Center. The mobs and selected surface 
observations were combined with matching SSMII brightness temperatures to form a data set 
which could be used to evaluate algorithms for deriving total precipitable water over the ocean. 

The total precipitable water was calculated from the equation 

where g = acceleration of gravity, q, = the mixing ratio of water vapor to dry air at the ith 
level, and p, = pressure at the ith level. The units of U are kg/&, thus requiring g to be 
expressed in m/s2, q, in kg/kg, and p, in newtons/m2. 



NAME 

MACQUARIE IS. * 
MARION IS 
GOUGH IS. 
I.N. AMSTERDAM* 
KERMADEC IS. 
NORFOLK IS. 
AUSTRAL IS. 
EASTER IS.' 
TOTEGEGIE 
COOK ISLES 
TRINDADE IS. 
TUAMOTU 
ST. HELENA 
PAGO PAGO 
COCOS IS.* 
ATUONA 
PENRHYN 
FUNAFUTI 
ASCENSION IS. 
DIEGO GARCIA* 
MAJURO 
KOROR 
TRUK 
KWAJALEIN 
YAP 
ISLA SAN ANDREAS* 
TARAWA 
BARBADOS* 
JOHNSTON IS. 
SAN MAARTEN* 
WAKE IS. 
ROBERTS FLD.* 
MARCUS IS. 
ISHIGAKUIMA* 
MINAMIDAITO JIMA* 
CHICHI JIMA 
MIDWAY 
TANGO 
KINDLEY FIELD* 
HACHUA JIMA* 
ROMEO 
SHEMYA IS. 
COCA* 
LIMA* 
ST. PAUL IS.* 
MIKE* 
JAN MAYEN 
BJORNOYA* 

NUMBER 

94998 
68994 
68906 
6 1996 
93997 
94996 
91958 
85469 
91948 
9 1843 
83650 
91944 
61901 
91765 
96996 
91925 
91801 
91643 
61902 
61967 
91367 
91408 
91334 
91366 
91413 
80001 
91610 
78954 
91275 
78866 
91245 
78384 
47991 
47918 
47945 
47971 
91066 
C7T 
78016 
47678 
C7R 
70414 
C7C 
C7L 
70308 
C7M 
01001 
01028 

LAT 

-54.50 
-46.88 
-40.35 
-37.80 
-29.25 
-29.05 
-27.62 
-27.17 
-23.10 
-21.20 
-20.50 
-18.07 
-15.97 
-14.33 
-12.18 
-9.82 
-9.02 
-8.52 
-7.97 
-7.35 
7.03 
7.33 
7.47 
8.72 
9.48 

12.58 
13.05 
13.07 
16.73 
18.05 
19.28 
19.30 
24.30 
24.33 
25.83 
27.08 
28.22 
29 
32.37 
33.12 
47 
52.72 
52.75 
57 
57.15 
66 
70.93 
74.52 

TABLE 
LADIOSONDE 

LONG 

7.1 
STAT11 

-- 

- - 

AREA 

109 
388 
83 
62 
34 
34 
47 

117 
3 1 

218 
10 

OK 
122 
135 
14 

200 
10 
2.80 

88 
152 
10 
8 

118 
16 
54 
20.50 
23 

43 1 
1.30 

85 
8 

183 
2.60 

215 
46.6 
24.60 
15 

OK 
53 
69.90 

OK 
21 

OK 
OK 
90.60 

OK 
373 
179 



In Table 7.1 the entries are the name of the station, its World Meteorological 
Organization number, latitude with degrees south expressed as minus, longitude, the area in 
square kilometers, and the percentage of the 19.35 GHz IFOV that the station occupies. We 
were unable to obtain exact estimates of the areas of some of the islands. We were able to 
verify that they were small in comparison to the 19 GHz footprints. The weather ships also 
were assumed to be small. 

7.3.2 Comparisons 

7.3.2.1 Initial Algorithm 

The initial algorithms for retrieving SSMII geophysical parameters are described in [I] 
and will be referred to in this section as the Hughes algorithm or more precisely the Hughes 
algorithms as in reality there are several algorithms. The Hughes algorithm is divided into 
eleven climate codes for each hemisphere, each of which relates to selected latitude zones and/or 
seasons. This approach permits "fine tuning" the coefficients for a particular climate, however 
the boundaries between the latitude zones are "hard" and the climate changes occur instanta- 
neously. This approach can lead to unnaturally large gradients in parameters at these 
boundaries. In addition to validating the algorithms for each climate code, it was felt that it was 
necessary to check for the existence of these boundary gradients. Figure 7.1 shows the boundary 
discontinuities between climate codes. This figure shows data for August 11 ,  1987 for revs 740, 
741, and 742. The land mass in rev 742 is Africa and Saudi Arabia. Deep red denotes flagged 
areas which are either land or areas of precipitation. Revs 740 and 741 show boundaries at 25 
degrees south latitude and the equator. The equatorial boundary shown in yellow to the south 
and red to the north is particularly noticeable. The boundary at 25 degrees south is noticeable 
as a line between lighter and darker blue. The sharp boundary near 20 degrees south is a 
boundary between air masses. Lesser amounts of water vapor are shown in darker blue and 
increasing amounts are shown in lighter blue, yellow, and light red. 

Table 7.2 shows the comparisons for the Hughes algorithms with radiosonde determi- 
nations for the latitude zones and also globally. All entries in the table are kg/m2 or precipitable 
millimeters. The columns labeled mean show the mean value for all the retrievals and 
radiosondes for that particular latitude zone. The columns labeled standard deviation (STD 
DEV) are the natural variance of the sample set. This is the variance exhibited by the total 
precipitable water in this climate zone. The column labeled rms diff is the rms difference 
between the SSMII retrieval and the corresponding radiosonde value. The column labeled bias 
is the difference between the mean SSMII retrieval and the mean radiosonde retrieval. A 
negative bias indicates an underestimate by the SSMII and a positive bias indicates an 
overestimate. 



Figure 7.1 - Revs 740-2 showing gradients the geograunh ~ o u n c i ~ ~ ~ ~ =  >->L 

climate codes of the Hughes algorithm. The area shown is the Indian Ocean. 
Gradients are notable at the equator and at 25 S latitude. Lesser amounts of 
water vapor are shown in blue and increasing amounts are shown in yellow and 
red. Solid red areas are flagged values and indicate land or precipitation. 



TABLE 7.2 

LATITUDE 

ZONE 

GLOBAL 

HI 

SAMPLE 

SIZE 

JGI 

T 
HES ALGORITHM RETRIEVALS 

MEAN 1 STD DEV RMS 

DIFF 

BIAS 

The algorithm used in the polar regions has a distinct tendency to underestimate the 
amount of water vapor that is present and the algorithm used in the warm tropics shows a 
tendency to overestimate the amount of water vapor that is present. These two tendencies 
effectively cancel each other as the global data set shows a negligible bias. All of the rms 
differences are larger than the desired Â 2.0 kg/m2. Figure 7.2 is a scatter plot of the global 
data set. 

At least two factors are sources of differences between the radiosonde and the SSMII 
derived values of total precipitable water. One is errors in the radiosonde determinations of 
temperature, pressure, and humidity. A coefficient of variance of 0.042 for US radiosondes was 
obtained in [3]. This translates into an error of 1.1 kg/m2 for this sample set. The other factor 
is small scale variability in water vapor. An estimate of this was obtained by comparing the four 
values derived from the SSMII with each other. The rms difference between the four samples 
for each raob match-up is 1.5 kg/m2. When these two factors are taken into account the rms 
difference between raobs and the Hughes algorithm becomes 4.7 kg/m2. The data presented in 
Table 7.2 and shown in Figure 7.2 are from the trimmed data set. The trimming procedure is 
discussed in Section 7.3.2.2. 
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Figure 7.2 - Retrievals from the Hughes algorithm vs mobs. Units are kg/m2 or precipitable 
millimeters. Values are from the trimmed data set and are wmposited from the climate codes 
that comprise the Hughes algorithm for total precipitable water. 

7.3.2.2 Algorithm Improvement 

Previous experience with the SMMR instruments on SEASAT and Nimbus 7 shows that 
it is possible to achieve rms differences between satellite and radiosonde determinations in the 
range 2.0 to 2.5 kg/m2 [3] and [4]. In addition the SMMR algorithms are global and do not int- 
roduce latitudinal or seasonal discontinuities in the retrieved water vapor maps. 

A global linear algorithm was determined to reduce the retrieval errors presented in Table 
7.2. A statistical regression between the set of SSMII brightness temperatures and the 
corresponding total water vapor as determined from the mobs was used. This preliminary 
algorithm was presented at the July 1988 Cal/Val Team meeting. This algorithm was based on 
matches that had been obtained up to that time. The data set was biased in that there was an 



over representation of arctic soundings which biased the sample toward small values of water 
vapor. When additional soundings from the tropics were obtained, it was noted that the 
preliminary algorithm did not estimate large values of water vapor very well. 

In working with such a large and heterogeneous data set, there are many possibilities for 
errors. To eliminate the erroneous data that had not been eliminated earlier, 2% of the largest 
positive and 2% of the largest negative differences between mob and retrieval were eliminated 
(i.e. trimmed) and the statistics were re-computed. This trimming procedure is described in [5]. 

Using standard regression techniques and the larger, more complete data set, an attempt 
was made to develop a global, linear algorithm. Figure 7.3 shows the best linear relationship 

Nesd i s L i near 

70 

/ 

Figure 7.3 - Retrievals from a linear, global algorithm developed at NESDIS vs mobs. Units 
are kg/m2 or precipitable millimeters. The linear algorithm has significant non-linearities in the 
retrievals. It shows a tendency to overestimate at medium values and underestimate at larger 
values. 



for the dependent data set. In Figure 7.3 there appears to be a non-linear relationship between 
total precipitable water as deduced from radiosondes and that deduced from the SSMII. The 
linear algorithm overestimates water vapor in the mid-range and underestimates large values. 
This observation plus a review of previous work [6-81 led to the consideration of a non-linear 
algorithm. 

The square of the 22 GHz brightness temperature was introduced as a predictor and the 
regressions were performed as before. Figure 7.4 is a scatter plot of the best four channel 
non-linear algorithm. This algorithm uses 19V, 22V, 37V, and 22V squared. Thus the equation 
becomes 

The coefficients are given in Table 7.11. 

Table 7.3 gives the statistics for this algorithm for both the global data set and latitude 
zones of the Hughes algorithm. When the radiosonde precision and small scale variability of 
water vapor are taken into account, the rms difference becomes 2.4 k g l d .  

TABLE 7.3 
IMPROVED NON-LINEAR ALGORITHM 

7 SAMPLE 
SIZE 

MEAN STD DEV 

RET 

11.0 
14.1 
26.2 
41.3 
40.3 
48.2 

22.8 

26.3 - 

RAOB 

11.0 
13.3 
27.1 
38.9 
39.8 
50.3 

22.2 

26.3 - 

RET 

3.8 
7.7 
14.4 
11.1 
9.2 
8.2 

10.2 

16.7 

RAOB 

4.2 
8.0 
14.0 
12.2 
9.0 
9.3 

9.9 

16.9 - 

RMS 
DIEF 

2.0 
1.9 
3.3 
3.7 
3.5 
4.3 

2.6 

3.0 - 

- 
BIAS 

- 
0.0 
0.8 
0.9 
2.4 
0.5 
-2.1 

0.6 

0.0 - 
The non-linear algorithm still shows a tendency to underestimate at the highest water 

vapor values, but overestimates slightly for the next two largest classes. There should be no 

7-1 1 
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Figure 7.4 - Retrievals from the NESDIS or improved algorithm vs raobs. Units are kg/m2 
or precipitable millimeters. Values are from the trimmed data set and were derived with a 
global, non-linear algorithm. 

bias in the global data set as it is the dependent data set. Another encouraging fact is that the 
standard deviations of the raob and predicted (retrieved) sets are about the same globally and in 
the latitude zones. Figure 7.4 also gives a hint of the tendency to underestimate at large values 
and also a hint of a tendency to overestimate at the lowest values. 

Additionally, we investigated a segmented non-linear algorithm using the square of the 
22V brightness temperature with a weighted average in the transition zones. The best of these 
gives very slightly better results than the global algorithms, but has not been implemented due 
to coding complexity. 

The results presented above are for dependent data that were taken between July, 1987 
and April, 1988. We continued to collect mobs until August, 1988. Thus the data taken from 



May through July, 1988 constitute an independent data set. Figure 7.5 is a plot of retrieved vs. 
observed for the independent data set. 

R e t r i e v e d  VS Observed 

70 , 

Figure 7.5 - Retrievals from the non-linear algorithm for an independent data set collected May- 
July, 1988. Statistics are in Table 7.4. 

The fractional error {(ms difflmean) x 100} of the water vapor data shown in Table 7.4 
is 10.8% which is very comparable to the dependent data set's fractional error of 11.4%. All 
entries in Table 7.4 are in kg/m2. 

In addition to the non-linear algorithm used to produce the results thus far presented, two 
other non-linear algorithms have been suggested [8] and [9]. The non-linear algorithm of [8] 
uses variables of the form log (To - TB), where Tn is the brightness temperature and To is 
a threshold temperature greater than any TÃ̂  Using our dependent data set of 587 observations, 
we derived coefficients for an algorithm using four logarithmic variables. The rms difference 
between predicted and observed is 2.97 kg/m2. The best four channels are 19H, 22V, 37V, and 



85H. The 22V is obviously the dominant predictor and other combinations involving 22V do 
almost as well. 

TABLE 7.4 
INDEPENDENT DATA SET 

LATITUDE SAMPLE 
ZONE SIZE 

GLOBAL 1 171 

MEAN STD DEV 

RET 1 MOB RET RAOB 

RMS BIAS 
DIFF 

3.3 0.4 
0 0 
5.2 -1.6 
4.1 1.2 
5.1 -0.8 
3.8 -1.6 

4.0 -0.4 

4.2 -0.7 

7.3.3 CONCLUSIONS 

Based on comparisons of the SSMII retrieved total water vapor and total water vapor 
derived from radiosonde data, the Hughes algorithm does not meet the SSMII specifications of 
Â 2.0 kg/m2 over the range 0 - 80 kg/m2. A global rms difference of 4.7 kg/m2 was observed 
with zonal rms differences ranging from 2.6 kg/m2 in the Arctic to 7.2 kg/m2 in the tropics. 
In addition due to the intrinsic limitations of the zonal or sequential algorithm at the boundaries, 
obvious erroneous discontinuities were introduced in the retrieved water vapor maps. 

Initial efforts to improve the algorithm centered on deriving a global linear algorithm. When 
this formulation also proved inadequate to meet specifications, a non-linear algorithm was 
constructed using a quadratic term for the 22V channel. This algorithm resulted in a large 
reduction of the rms retrieval errors on a global and wnal basis and removes the discontinuities 
at the boundaries of the wnal regions. The global rms differences were reduced to 2.4 kg/m2. 
It should be noted that due to the flexibility of the SSMII software, the non-linear algorithm used 
to generate results in Tables 7.3 and 7.4 may be readily implemented. 

A few cautionary remarks are in order. The use of a nonlinear algorithm will 
undoubtedly increase the sensitivity of water vapor retrievals to cloud water amount, the 



presence of precipitation, and the presence of sea ice. It is very important that the precipitation 
screen given with the algorithm coefficients be used with this algorithm. It is also important that 
retrievals not be attempted when ice is in the SSM/I field-of-view. 

It is recommended that radiosonde data be collected periodically to provide a quality 
control on the water vapor product. This could be accomplished by the periodic collection of 
raobs from the stations used in the validation study and comparing retrievals. 

As part of our validation effort for total precipitable water, we investigated both linear 
and non-linear algorithms. Our results indicate that a non-linear algorithm is required for best 
agreement between observed and derived values. 

7.4 CLOUD LIQUID WATER 

7.4.1 Surface Data So- 

The sources of data for validation of the cloud liquid water content were upward looking 
microwave radiometers. Measurements were made by NOAA-WPL personnel and University 
of Massachusetts (UMass) personnel. The NOAA measurements were made at San Nicolas 
Island as part of Project FIRE and at the four sites of the Colorado remote profiler network. 
The four sites are Denver (Stapleton Airport), Fleming, Flagler, and Platteville. The 
radiometers in the Colorado network are fixed zenith viewing radiometers that operate at 20.6 
and 31.65 GHz. The Stapleton airport installation also has four frequencies in the oxygen 
complex for temperature profile retrievals. All of the stations have Doppler radars for wind 
speed and direction measurements. These stations are described in [lo]. The San Nicolas 
measurements were made by a portable radiometer that has a steerable beam and is described 
in [Ill. Data from the Colorado network stations which operate in an automated continuous 
mode were obtained for the periods July 15-October 15, 1987 and January 15-April 15, 1988 
to provide for a range of seasons and surface conditions. The San Nicolas Island data were 
taken between July 2 and July 19, 1987. The accuracy of the NOAA profiler network 
determinations of cloud liquid water are estimated [12] to be 5.2 E-3 kg/m2. 

The UMass measurements were made using an autocorrelation radiometer operating 
between 20.5 and 23.5 GHz and an auxiliary radiometer at 37 GHz. These measurements were 
made at Kwajalein Island. The operation of the autocorrelation radiometer is described in [13]. 
The Kwajalein data were taken between March 24 and April 7, 1988. 

To compensate for the different fields-of-view of the surface based radiometers and the 
SSWI, the NOAA data were averaged over a two hour period, one hour on either side of the 
overpass time. The UMass data were averaged over a one hour time period, one half hour on 
either side of the overpass time. 



Characteristics of the NOAA profiler radiometers are given in Table 7.5. All latitudes 
are North and all longitudes are West. The effective fields-of-view (EFOV) are the 3 dB 
beamwidths and the spot sizes are in meters for a distance of 1 km. 

TABLE 7.5 

CHARACTERISTICS OF NOAA PROFILING NETWORK 

NOAA PROFILER NETWORK EFOV SAMPLING 

LAT 1 LONG DEGREE 1 SPOT 
TIME 

DENVER 39.8 105 
FLEMING 40.6 103 
ELAGLER 39.1 103 
PLATTEVILLE 40.2 105 
SAN NICOLAS 33 . 119 

Characteristics of the UMass autocorrelation radiometer (CORRAD) are given in Table - 
7.6. The precision estimate for the CORRAD is given in [14]. 

TABLE 7.6 

CHARACTERISTICS OF CORRAD 

RF BANDPASS 
TIME DELAYS 
FREQUENCY RESOLUTION 
RECEIVER NOISE TEMPERATURE 
NOISE FLOOR (AT) 
EFOV 
FOOTPRINT @ 1 KM 
SAMPLING TIME 
KWAJALEIN ISLAND 
PRECISION 

20.5-23.5 GHz 
-0.2 TO 6.1 NS (0.1 NS STEPS) 
160 MHz1100 MHz (3 dB) 
2000 K 
0.5 K/(SEC)ln 
2 DEGREES 
35 M 
10 MIN 
(8.7 N, 167.7 E) 
8.0E-3 kglm2 

7.4.2 Comparisons 

. . 7.4.2.1 m l e o r i t h m  



The initial Hughes algorithm [I] used to retrieve cloud liquid water was a linear, four- 
channel algorithm that was generated by regression using brightness temperatures calculated 
from simulated clouds and a radiative transfer model. The algorithm was divided into latitudinal 
and seasonal segments called climate codes. There were eleven climate codes per hemisphere. 
Over the ocean there were nine distinct sets of coefficients that used the 19H, 22V, 37V, and 
37H channels. Over land there was one set of coefficients per climate code which used the 19V, 
19H, 37V, and 85V channels. Another set of coefficients was used to retrieve cloud water over 
snow. This set of coefficients was used for all climate codes and utilized the 22V, 37H, 85V, 
and 85H channels. 

The latitude zones were the same as those used in the water vapor algorithm. The opposite 
hemisphere is seasonally adjusted so that seasonal algorithms are used in the appropriate season 
and latitude zone. 

Two special categories of retrievals were created; out-of-limits and indeterminate. All 
geophysical retrievals were tested to determine whether they were within a physically possible 
range of values. If they were outside the physically possible range, they were assigned an out- 
of-limits value, usually 1 less than the maximum number of counts allocated for that parameter. 
The indeterminate classification implies that certain logical conditions are not being met or that 
the pixel under consideration may be part ocean and part land (i.e., coastal). The indeterminate 
category was assigned the maximum count value. 

We found that more than 90% of all retrieved values of cloud liquid water were either 
out-of-limits or indeterminate values. This percentage was found at all test sites and before and 
after the SSMII's shutdown during December and January 1987-8. Because of this finding, we 
decided to improve the algorithm. 

7.4.2.2 u o v e d  Algorithm 

The approach taken to improve the cloud liquid water algorithm was similar to that 
employed for the water vapor algorithm development. Surface values and brightness 
temperatures were matched and standard linear regression techniques were used to find the best 
set of channels and coefficients. Our retrieval equation is linear in brightness temperature and 
of the form 

CLW = a<> + E q*TBi, i = 1,2, ... 7 

where the a,'s are coefficients and the TBi's are brightness temperatures. Table 7.7 gives the 
explicit relationships between channel frequency and polarization and coefficient number. 



TABLE 7.7 
ALGORITHM CHANNEL AND COEFFICIENT DESIGNATION 

CHANNEL NO I COEFFICIENT SYMBOL CHANNEL 

The land and ocean cases were separated and the land cases were further divided into 
snow and no snow groups. Initial correlations on the entire data set, which consisted of clear 
and cloudy cases yielded very low correlation coefficients. Next cases, where the CLW content 
was < 5.0E-3 kg/m2 were excluded from the data set. The channels which gave the best 
correlation are 19V, 19H, 37V, and 85H. The 85V channel was excluded from the regressions 
because of its increased noise. The snow data set was analyzed separately. 

Using the discriminants 19H - 85H > 8K and maps of weekly snow cover to establish 
the presence of snow, a set of observations was analyzed for cloud liquid water content. All 
cases where the CLW content was < 5.0E-3 kg/m2 were excluded. The best results of our 
attempts to find an improved cloud liquid water algorithm over land are shown in Table 7.8. It 
is readily apparent from the low values of the correlation coefficients in Table 7.8 that the 
development of a CLW algorithm for land and snow surfaces will be very difficult at best. It 
is worth noting the correlation coefficients improve if the presence of clouds can be inferred 
from other sources. 

The cloud liquid water determinations over the ocean yielded better results. Initially it 
was intended to analyze the San Nicholas Island and Kwajalein Island data separately and then 
as a combined data set. When the sizes of the two data sets were considered (10 samples per 
island), the decision was made to analyze them as a combined data set. In addition to the 
standard linear regression procedures, we performed additional independent statistical analysis 
as well. In analyzing the data all possible four channel combination were considered as well as 
a full six channel algorithm. The six channel algorithm gives a slightly higher explained 
variance or correlation coefficient than any four channel algorithm, however the standard error 
of the estimate is greater because of the reduced number of degrees of freedom. Table 7.9 gives 
the correlation coefficient (R) and standard error of the estimate (S.E.E.) for some channel 
combinations. Figure 7.6 is a plot of satellite versus surface values for the combined oceanic 
data set using the best four channel algorithm. After completing our analysis of the best four 
channel algorithm, the 85H channel became quite noisy. The other four channel algorithm 
shown in Table 7.9 is the best algorithm excluding 85H. 



NO. OBS. 

CLOUD LIQUID WATER RESULTS 

CORK. COEFF. MEAN(KGlM2) 

LAND 

0.214 I 0.005 

CLW > 0.005 
0.445 I 0.037 

SNOW 

0.185 1 0.007 

CLW > 0.005 
0.369 1 0.032 

TABLE 7.9 

CLW ALGORITHM RESULTS 

CHANNEL NO. SAMPLES MEAN S.E.E. R 

1, 2, 3, 4, 5 ,  7 20 0.136 0.042 0.892 
2, 3, 4, 7 20 0.136 0.039 0.891 
2,3,4,5 20 0.136 0.040 0.886 
4 20 0.136 0.039 0.871 

As part of our statistical analysis, it was noted that the 37V channel alone is a good 
predictor of cloud liquid water. The statistics for the 37V channel are also included in Table 
7.9. 

Because of the limited size of the ocean data set, further statistical analysis was 
performed. We used the cross-validation and jackknifing techniques to examine our results. 



R e t r i e v e d  v s .  Observed 

OBSERVED CKG/W*23 

Figure 7.6 - A plot of retrieved vs observed cloud liquid water for the wmbiied San Niwlas 
and Kwajalein data sets. The units are kg/m2. The San Nicolas points are shown as pluses and 
the Kwajalein points are shown as diamonds. The solid line is the "perfect agreement" line. 
The retrieved values are from the dependent data set. 

These procedures are discussed in [15]. For cross-validation we generated a quasi-independent 
data set by using 19 of the 20 points as dependent data and predicting the 20th. This 
was repeated until all 20 points had been predicted independently. We used the same four 
channels that gave the lowest rms difference for the completely dependent data set. 

Using a procedure known as jackknifing [15], we generated another independent estimate 
of the retrieved mean. standard deviation, and rms difference between the retrievals and the 
ground based cloud liquid water measurements. The relationship 1151 (PARMSTAR) = 20*(- 
PARMALL) - 19*(PARM),, where PARMALL is the parameter from the completely dependent 
data set and FARM is the parameter when it is calculated from a data set of 19 points, was used. 
The jackknifed values presented in Table 7.10 are averages of 20 such computations of 



PARMSTAR for each parameter. Table 7.10 presents a summary of the observed and three . 

retrieved data sets. 

-- 

TABLE 7.10 

STATISTICAL COMPARISONS 

--- 

NO OF CASES 
MINIMUM 
MAXIMUM 
MEAN 
STD DEV 
RMS DEW 

The three retrieved data sets are quite consistent. All have a negligible bias about the 
mean when compared with the observed data set. The standard deviations of the retrieved values 
are slightly smaller than the standard deviation of the observed value, a fact not uncommon to 
regression algorithms. The rms differences are remarkably similar for the three computations. 
Even though the sample size is small, there are four predictors and 15 degrees of freedom. The 
improved algorithm seems to be statistically significant and "robust". 

7.4.3 Conclusions 

In view of the very low correlations between brightness temperatures and cloud liquid 
water content over land and snow, it is recommended that retrievals of this parameter not be 
attempted. If an independent way of determining the presence of clouds can be found, it might 
be possible to devise an algorithm that will give a useful estimate of the cloud liquid water 
content. 

It should be noted that Colorado is not an ideal site for testing cloud liquid water content 
algorithms because of its altitude and generally dry conditions. The NOAA profiler network is 
almost the only source of routine measurements of cloud liquid water. It is likely that the SSMII 
can detect heavier water clouds over land before the onset of actual precipitation. 

It is recommended that a quality control procedure be instituted for the cloud liquid water 
product as well. Collecting significant amounts of cloud liquid water measurements from surface 
based systems is a major undertaking. The recommended procedure is to use either OLS data 
which can be co-located with the SSMII or GOES visible and infrared data and compare qualita- 
tively where the SSMII algorithm places clouds and their water content versus the visible and 



IR images which should show cloud location over the ocean rather well. It should be obvious 
if the SSMII "misses" clouds or places them in clear areas. 

The initial recommendation was to use the six channel algorithm because it explained the 
most variance. Further examination revealed that a four channel algorithm probably gave better 
results, especially when considering the standard error of the estimate. Our additional analysis 
also revealed that the 37V channel alone is a very good predictor of cloud liquid water. After 
most of the analysis for the CallVal effort was completed, the noise of the 85H channel 
increased significantly. As a result, we developed a CLW algorithm that does not use either 85 
GHz channel. 

Table 7.11 gives the actual coefficients for the channels used in the recommended 
algorithms. We show the latest total precipitable water algorithm which is non-linear and global. 
We show algorithms for cloud liquid water. Included are coefficients for a six channel 
algorithm, coefficients for two four channel algorithms with and without 85H and a single 
channel algorithm using only 37V. The retrieved parameters will have the units of kg/m2. 

The results presented here have also been presented in Alishouse et al[16] and Alishouse 
et al [17]. 

TABLE 7.11 

RECOMMENDED ALGORITHM COEFFICIENTS 

6 CHANNELS W 85H 

19V 
19H 
22V 
22V (SQRD) 
37V 
37H 
85V 
85H 

Precipitation Screen: 

CLW 
OCEAN 

W/0 85H 

-- 
8.4333E-3 

-7.5959E-3 

CLW 
OCEAN 

37V 

- 
-- 
-- 
1.18122E-2 

- 
-2.45276 

If -11.7939 - 0.02727*Ta37v + 0.09920*1- < 0 K 

then compute water vapor and cloud liquid water over ocean. 
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8.0 WIND SPEED VALIDATION 

The SSM/I wind speed retrieval algorithm developed by Environmental Research and 
Technology, Inc. (ERT) for Hughes Aircraft is called the D-matrix algorithm and has the 
following form [I]: 

Equation (8.1) is valid only over open ocean where the wind speed, SW, is in m/s and 
referenced to a height of 19.5 m above the surface. Equation (8.1) also contains the terms Tc, 
which represent the brightness temperature of frequency/polarization combination "x" and the 
D-matrix coefficients, Cn, where "j" is the climate code index and varies from 1 to 11. The 
eleven sets of coefficients (only 9 of which are distinct) used in the original D-matrix algorithm 
are listed in Table 8.1. Each of the 9 distinct climate codes represents a particular season and 
latitude band as shown in Table 8.2. 

Since microwave radiation at the SSMII frequencies is heavily attenuated by rain in the 
earth's atmosphere which masks the wind speed signature generated by waves and foam on the 
ocean surface, ERT suggested the use of a rain-flag for the purpose of identifying conditions 

TABLE 8.1 

COEFFICIENTS OF THE ORIGINAL HUGHES D-MATRIX ALGORITHM 

Climate 
Code 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 - 



TABLE 8.2 

CLIMATE CODES OF THE HUGHES D-MATRE ALGORITHM 

SEASON CLIMATE 
ZONE (NORTHERN HEMISPHERE) CODE 

Tropics JUN-NOV 

(0-20 LAT.) 
DEC-MAY 

Low-Lat. Transition JUN-NOV 

(20-25 LAT.) 
DEC-MAY 

Mid-Latitude SEP-NOV, MAR-MAY 

(25-55 LAT.) JUN-AUG 

DEC-FEB 

Arctic MAY-OCT 

(55-90 LAT.) 
NOV-APR 

under which less accurate wind speed retrievals are produced. The original rain-flag logic is 
shown below. 

IF: TBigH > 190K . 
OR: [TMW - TB37H] < 25K 
Then possible rain exists and rain-flag = 1 

IF: [Tm - TBSTH] < 10K 
Then heavy rain exists and rain-flag = 2 
Otherwise rain-flag = 0 

The accuracy specification for wind speed retrievals under conditions of no rainfall (i.e., 
rain-flag = 0) was Â 2 mls over the range 3 to 25 mls. Accuracy was not specified for wind 



retrievals from cells flagged either 1 or 2. In fact, the original D-matrix algorithm did not 
attempt to retrieve winds under rain-flag 2 conditions. 

8.1 NOAA BUOY SYSTEM AND CRITERIA FOR COMPARISON 

Validation of the SSWI wind speed retrievals was done using the anemometer measured 
winds of open ocean buoys maintained by the National Oceanic and Atmospheric Administration 
(NOAA). These buoys record an 8.5 minute average of the wind once every hour with an 
accuracy of Â 0.5 rnls for winds less than 10 mis and 5% for winds greater than 10 mis [2]. 

In anticipation of SSWI antenna sidelobes, which could give rise to land contamination 
of ocean brightness temperatures, only buoys further than 100 km from land were chosen for 
the validation. The 19 NOAA buoys actually used for the validation are listed in Table 8.3. 

The wind speed observations taken by the ocean buoys were at heights of either 5 or 10 
meters above the surface. These measurements were converted to equivalent winds at 19.5 
meters above the surface [3] so that they could be compared directly to the SSMII estimates 
which predict winds at the 19.5 meter level. Converted buoy winds and D-matrix winds were 
paired only when the SSMII retrieval was located within 25 km of the buoy position and the 
SSWI overpass time was within 30 minutes of the buoy wind speed measurement. Based on 
the work of Monaldo [4], a spatial difference of 25 km and a temporal difference of 30 minutes 
between SSWI and buoy measured wind speeds adds variances of approximately 0.5 m/s and 
0.2 mis, respectively, to the total variance of the comparison. These variances increase the total 
standard deviation of 2 mls by less than 10% and therefore contribute only slightly to the overall 
error. Because a 25 km spatial separation introduces little additional error to the comparison 
of SSMII and buoy winds, the SSWI geolocation problem (see the instrument calibration section 
of this report) which results in positioning errors of between 5 and 25 kilometers, does not 
significantly affect the wind speed validation. This comparison criteria also stipulates that only 
one SSWI-buoy pair be selected from each SSWI overpass. Thus the validation data set was 
composed of independent comparisons. 

8.2 REQUIRED NUMBER OF COMPARISONS 

The accuracy specification of Â 2 d s  for D-matrix wind speed retrievals can be 
interpreted in at least two ways. One interpretation is that this is the standard deviation, in an 
average sense, of the difference between all coincident buoy and SSMII wind speed 
measurements. An alternative interpretation is that the standard deviation of such comparisons 
in any sub-interval of the 3-25 m/s wind speed range must not exceed 2 mls. The first of these 
two interpretations can disguise the fact that over certain sub-intervals of the 3-25 mis wind 
speed range, the accuracy of the D-matrix prediction may be worse than Â 2 m/s. In fact, a 
modeled error budget (discussed in section 8.3) predicts that the accuracy is wind speed 
dependent. It is possible that sub-intervals with accuracies worse than Â 2 mls could average 
with sub-intervals having accuracies better than Â 2 mls to give a resulting overall accuracy of 
better than Â 2 mls. This is often true for regression-type algorithms, like the D-matrix, which 



TABLE 8.3 

NOAA BUOYS USED FOR THE SSMII 1 

1 
BUOY I.D. LATITUDE LONGITUDE 

(El 

ND SPEED VALIDATION 

Low Lat Trans 

tend to make especially good predictions near the overall average wind speed and predictions 
of less accuracy for wind speeds which are removed from the average wind speed. For this 
reason, the 3-25 m/s wind speed range of interest was divided into the 6 sub-intervals shown in 
Table 8.4 and the D-matrix performance was analyzed in each sub-interval. Also shown in 
Table 8.4 is the number of comparisons out of 1,000 for which the buoy wind speed falls within 
the particular sub-interval range. These comparison counts are based on the global distribution 
of winds given by Schroeder [5] which is shown in Figure 8.1. 

It is preferable to have a sample size of 30 or more when doing statistical analysis [6] 
of the data. For wind speed sub-intervals 1, 2, and 3, it appears that this sample size can be 
obtained by collecting approximately 140 comparisons. Preliminary studies showed that about 
15% of the data are rain-flagged and since the comparisons are made only with data which is 
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Figure 8.1 - The global distribution of ocean surface winds. 



not rain-flagged, the sample size required 
for each climate code needed to be 
increased 15% from 140 to 161. Although 
this relatively small number of comparisons 
could be obtained in 60 days using three 
buoys, other factors affect the total 
required buoy count. These include lost 
data due to periodic buoy maintenance and 
the likelihood of encountering wind speeds 
distributed according to Figure 8.1. These 
factors were determined from actual 
climatic summaries [7] prepared by the 
National Climatic Data Center for the 
individual data buoys. 

Finally, to complete the validation 
within one year we must have enough 
buoys within each of the D-matrix latitude 

I TABLE 8.4 

D-MATRIXIBUOY WIND SPEED 
COMPARISONS 

1 Comparisons 
I.D. 1 Range (mts) 1 1000 

bands and enough SSM/I overpasses per buoy to collect the required 161 comparisons per 
season. The number of SSMII overpasses depends on the latitude (LAT) of the buoy and can 
be approximated by using equation (8.2). 

SSWI Overpasses in 30 Days = 30/cos(LAT) 

Equation (8.2) is reasonably accurate up through 60 degrees latitude, above which the error 
exceeds 15%. 

This analysis established that the 19 buoys selected could more than satisfy all but the 
highest wind speed validation requirements. That is, the low probability of observing winds 
greater than 15 m/s made it difficult to evaluate the overall performance of the D-matrix 
algorithm in the range 15-25 mls. This problem is discussed more fully in section 8.6. 

8.3 PRE-LAUNCH VALIDATION MODELING - ERROR BUDGET 

The sources of random errors associated with the comparison of SSMII wind retrievals 
and ocean buoy measurements are summarized in the following error budget. 

* Extrapolation noise. (Buoy average at a point differs from the instantaneous 
spatial average made by the SSWI). 

* SSMII instrument noise. 

* Buoy instrument noise. 



* D-matrix algorithm model noise. (Inability of algorithm to model exactly the 
radiative transfer processes). 

* Decorrelation noise. (Spatial and temporal separation of the SSMII and buoy 
measurements). 

* Translation noise. (Errors in translating the buoy wind measurement to a height 
of 19.5 m). 

* Round-off noise. (Error due to rounding SSMII winds to the nearest mls) 

The magnitude of these errors (less decorrelation noise and translation noise) is shown 
in Figure 8.2 over the wind speed range of 3 to 25 mls for the Climate Code 5 algorithm. Plots 
for the other 8 versions of the D-matrix algorithm are very similar to the results of Climate 
Code 5 and are therefore not shown. In generating the extrapolation noise curve of Figure 8.2, 
the one-dimensional wind field model of Pierson [8] was used as were effective footprint 
diameters of 55, 49, and 32 km for the 19,22, and 37 GHz SSWI channels, respectively. The 
buoy noise, which was discussed previously, is from Gilhousen [2]. The model noise was 
specified by Hughes Aircraft in a report by Lo [9]. 

The instrument noise as specified by Hughes [I] for the 19H, 22V, 37V, and 37H is 
0.41, 0.75, 0.38, and 0.39 degrees Kelvin,respectively. The round-off noise is due to the fact 
that the operational D-matrix algorithm retrievals are rounded off to the nearest whole mls 
before being recorded. Although the round-off noise does not contribute significantly to the total 
error of D-matrix retrievals, subsequent users of the data will introduce an error due to rounding 
when converting from mls to either miledhour or knots (in the case of knots, an average error 
of 0.7 knots and a maximum error of 1.5 knots will result). The average errors due to spatial 
and temporal separation of SSWI and buoy measurements are not included in the plot since they 
do not contribute significantly to the total. Likewise, errors in converting the buoy wind 
measurements to a height of 19.5 m are insignificant and are not shown in the plot. 

8.4 VALIDATION RESULTS 

Performance of the climate code 5 version of the original D-matrix algorithm is shown 
by the scatter plot in Figure 8.3. The legend shown in the lower right hand comer of the scatter 
plot is interpreted as follows. The bias and slope data indicates the y-axis intercept and slope 
of the regression line which has been chosen to minimize the sum of the squares of the 

distances from each point to the regression line. The SD is the standard deviation of 
the quantity, (D-matrix winds minus buoy winds). The line labeled "CORR(R)" is the 
correlation coefficient [lo] between buoy winds and D-matrix winds. Finally, the line labeled 
"#OBSR gives the number of observations or data points in the scatter plot. Figure 8.3 indicates 
that the Climate Code 5 D-matrix wind speed retrievals are scaled and biased by 0.85 and 5.7 
mls, respectively. This poor performance of the Climate Code 5 algorithm is typical of the 
other versions of the original D-matrix algorithm. 
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Figure 8.2 - Random errors affecting D-matrix wind speed 
retrievals from climate code 5. 
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Figure 8.3 - Perfomance of the original D-matrix algorithm 
for climate code 5. 



To correct this problem new coefficients were generated using standard linear regression 
of buoy wind speed on the coincident SSWI brightness temperature measurements, TBI,],, TWv, 
Ta37v, and TB37H- Performance of the new Climate Code 5 D-matrix algorithm is shown in 
Figure 8.4. The regression line associated with this scatter plot now has the desired slope of 
1.0 and bias of 0.0 indicating that the scale and bias problems of the original algorithm have 
been corrected. Despite the apparent good performance of the new algorithms, additional 
improvements are necessary and will be discussed later in section 8.5. 

Before analyzing the retrieval accuracy over various wind speed sub-intervals, it was 
necessary to reevaluate the rain-flag criteria. New rain-flag thresholds were determined using 
residual plots like those shown in Figures 8.5 and 8.6 which indicate the performance of the new 
D-matrix algorithm as a function of the parameters used to determine rain, which are (TMN - 
Tin& and TB,9H. Each of the data sets in the residual plots were then sub-divided into a number 
of range bins and the standard deviation, SD, and average (also called bias) of the points falling 
within each bin were calculated. The results of these calculations are shown in Figures 8.7 and 
8.8. The rain-flag thresholds were determined from these plots by locating values of the rain- 
flag parameters for which either the "SD" or "BIAS" curves crossed some predetermined 
accuracy level. For example, the accuracy requirement for retrievals with rain-flag zero is 2 
m/s. 

From Figures 8.7 and 8.8, one can see that the algorithm fails to meet this specification 
when either (Tm-Tyy^ < 50 or Ten], > 150. In this way, entirely new rain-flag criteria were 
defined. These are summarized in Table 8.5. Note our recommendation to use the four rain- 
flags 0, 1, 2, and 3, instead of the original three. It is recommended that wind speeds be 
calculated under all rain-flag conditions and that the associated rain-flag be the user's guide to 
the accuracy of the retrieval. This practice differs from the operation of the original D-matrix 
which retrieved winds only under rain-flag 0 and 1 conditions. Finally, it should be pointed out 
that the term "rain-flag" is somewhat misleading since the rain-flags (except rain-flag 0) indicate 

condition (including rain) which leads to reduced retrieval accuracy. The accuracy of the 
D-matrix retrievals is, in fact, very sensitive to rain since rain rates of less than 1 mm/hr will 
trip rain-flag 1 [l 11 (see also the section of this report on the validation of the D-matrix rain-rate 
algorithm). 

Table 8.5 shows the new D-matrix coefficients for all 9 climate codes which were 
derived using actual SSWI data from the period 10 July 1987 through 31 March 1988. The 
measured standard deviation of the difference between buoy winds and D-matrix winds for each 
of the climate codes under rain-flag 0 conditions is shown in Table 8.6. At least in the average 
sense, all 9 D-matrix algorithms appear to exceed the accuracy specification of Â 2 mls. Also 
shown in Table 8.6 is the total number of buoy/D-matrix wind comparisons from each climate 
code and the percentage of these that were tagged with a rain-flag of 1 or higher. Although the 
results shown in Table 8.6 are quite good, the D-matrix wind speed algorithm has several 
limitations which are discussed in the following section. 
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Figure 8.4 - Performance of the revised D-matrix algorithm 
for climate code 5. 



Figure 8.5 - D-matrix residual versus (TmTm& for climate 
code 5. 
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Figure 8.6 - D-matrix residual versus TBIgH for climate code 5. 
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TABLE 8.5 

NEW RAIN-FLAG CRITERIA AND COEFFICIENTS 

Criteria Accuracy 
I 

8.5 D-MATRIX LIMITATIONS 

Wind speed residual plots were again used to study limitations of the D-matrix algorithm. 
Plotting the residual as a function of buoy measured wind speed demonstrates the D-matrix 
performance over sub-intervals of the 3-25 mls range. Figure 8.9 shows the plot for Climate 
Code 5 which is typical of all 9 climate code versions of the D-matrix. Dividing the region of 
Figure 8.9 into a number of range bins and calculating the SD and bias (i.e., average) of the 
points falling within each bin results in the "interpreted" residual plot shown in Figure 8.10. 
This figure shows that the accuracy of the D-matrix retrievals is best near the global average 
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Figure 8.9 - D-matrix residual versus buoy winds for climate 
code 5. 
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TABLE 8.6 

PERFORMANCE OF REVISED D-MATRIX 

Climate 
Code 

1 
2 
3 
4 
5 
6 
7 
8 
9 

wind speed of 7 mls and becomes worse for predictions away from 7 mls. Note that the trend 
of the SD curve agrees quite well with the pre-launch error budget model described in figure 
8.2. Also note from the bias curve of Figure 8.10 that the high wind speed (> 15 mls) 
retrievals are biased low by more than 2 mls. 

ALGORITHM 

Although the retrieval accuracy is met across the climate code boundaries, the 
discontinuity of the retrieved winds across these boundaries is disturbing. This is illustrated in 
the global chart (see Figure 8.11) of SSMII wind speeds for the period January - February 1988. 
The average discontinuity across each latitude band boundary was also calculated using actual 
SSMII data. The results are summarized in Table 8.7. 

S.D. 
mls 

1.5 
1.4 
1.5 
1.5 
1.8 
1.5 
1.9 
1.8 
1.6 

The accuracy of the wind speed retrievals deteriorates rapidly in rain as was indicated 
by Figure 8.7. This is not so much a problem with the algorithm as it is a problem with the 
frequencies used by the SSMII. Microwave radiation at 19,22 and 37 GHz is heavily attenuated 
by water vapor and rain in the earth's atmosphere, effectively masking the wind speed signature 
generated by ocean surface foam and waves. This attenuation significantly affects the ability of 
the SSMII to retrieve accurate winds in and around typhoons and hurricanes where rain and 
heavy clouds are prevalent. Figure 8.12 shows the rain-flagged areas of typhoon Wynne as it 
appeared on July 25, 1987 at approximately 2040Z. According to aircraft reconnaissance data 
collected by the Air ForceINavy Joint Typhoon Warning Center, the boundary enclosing the 
rain-flag 3 area corresponds roughly to the 25 mls wind speed radius of this storm. Visually 
observed winds from the aircraft near the storm center were reported to be as high as 60 mls. 

Percentage 
Rain Flagged 

17 
10 
8 
9 

13 
12 
18 
19 
9 

Number of 
Comparisons 

376 
63 

109 
43 

1296 
643 
516 
279 
277 





Typhoon Wynne - 25 July 87 

L 142 144 146 us 

! 
IQN ' QCCURQCIES 

16 . . < 2 N S  

Figure 8.12 - Rain-flagged areas of typhoon Wynne as it passed over the Mariana 
islands on June 25, 1987 at 2045Z. Lines delineating rain-flagged areas within 
the storm are shown with their standard deviation retrieval accuracies. 



- 
Climate 
Codes 

TABLE 8.7 

WIND SPEED DISCONTINUITY ACROSS THE D-MATRIX ZONAL BOUNDARIES 

Average (ds)/Standard Deviation (ds) 

An apparent SSMII scan position bias in the D-matrix winds has been observed using the 
residual plot shown in Figure 8.13. A pitch, yaw and roll error of the SSMII is believed to be 
partly responsible for this phenomena. This question is discussed further in another section of 
this report which addresses the gwlocation problem. When the geolocation problem is solved, 
a slight adjustment of the D-matrix coefficients may be necessary. 

In concluding this section, it should be noted that two and possibly three serious 
limitations of the 9-version original D-matrix algorithm warrant use of an alternate algorithm. 
As will be shown in the next section, both the high wind bias and zonal discontinuity problems 
can be partially solved using an alternate D-matrix type algorithm which utilizes a single set of 
coefficients, instead of nine, without a loss in the specified + 2 mls accuracy. 

8.6 IMPROVED ALGORITHM 

A single D-matrix algorithm, valid at all latitudes and during all seasons was developed 
and found to meet the + 2 mls accuracy specification under rain-flag 0 conditions. This global 
wind speed algorithm was developed using 900 randomly selected SSMII buoy pairs (100 from 
each of the 9 climate codes). Out of this total, only 708 matched pairs (rain-flagged either 0 or 
1) were retained to develop the new algorithm. In this way, the coefficients for the algorithm 



SWATH POSITION 

Figure 8.13 - D-matrix residual versus SSMII swath position for 
climate code 5 .  



were generated using some data affected by rain (rain-flag 1 data), making the global algorithm 
somewhat tolerant of rain. 

A weighted linear regression [lo] of the buoy wind speeds on the coincident SSWI 
brightness temperatures of TBlgv, TW, TMW, and TB37H, was done using the data set described 
above. The reason for using TBisv instead of TBIgH will be discussed later in this section. The 
weights used in the regression were set equal to one over the square root of the wind speed 
density function (see Figure 8.1), evaluated at the particular buoy wind speed. This type of 
weighting has the effect of making all wind speed ranges equally important in the creation of the 
new algorithm. In contrast, the unweighted regression used previously tends to emphasize those 
wind speed ranges with the greatest amount of data and de-emphasize the ranges where little data 
was collected. This is precisely why the original D-matrix performed well near the global 
average wind speed of 7 mls and performed poorly (both in terms of SD and bias) in the high 
(> 15 mls) range. 

Performance of the alternate global D-matrix algorithm, under rain-free conditions, is 
shown in Figure 8.14. The data used in this figure is comprised of withheld data taken from 
all 9 of the original D-matrix climate codes. In other words, the global wind speed algorithm 
was generated using one set of data and tested on another independent set. From Figure 8.14, 
the retrieval SD is found to be 2.0 mls which meets the Â 2 mls accuracy specification. 

Although the regression line in Figure 8.14 shows slight errors in bias and slope, true 
performance of the alternate global wind speed algorithm is best illustrated by the interpreted 
residual plot shown in Figure 8.15. These results show that much of the high wind speed bias 
associated with the original D-matrix retrievals has been removed by the weighted regression 
technique. The sensitivity of the global wind speed algorithm to rain has not improved 
significantly as revealed by Figures 8.16 and 8.17. The feasibility of special D-matrix 
algorithms designed for use under rainy conditions will be addressed later in this section. 

It is useful to know what SSWI channels are most important in the retrieval of wind 
speeds. This aides in the construction of new algorithms and indicates what retrieval accuracies 
are possible should an SSMII channel become inoperative. To this end, the 708 matched pairs 
of data previously described were again used to create the best global multichannel regression 
algorithms where the number of channels varied from 1 to 5. The results are summarized in 
Table 8.8 where the SD shown indicates the relative retrieval accuracy. 

It is interesting to note that the best 4-channel algorithm (the proposed alternate global 
algorithm) does not use the same four channels as the original D-matrix algorithm. The 
proposed global algorithm uses TeNv instead of the TBIgH channel employed by the original D- 
matrix algorithm. If TBun had been chosen instead of TBigv, the performance would have been 
slightly worse with an SD of 2.1 mls under rain-flag zero conditions. As in the original 
algorithm, the alternate global algorithm also uses the 4-channel D-matrix since it represents a 
good compromise between calculation efficiency and retrieval accuracy. 
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Figure 8.14 - Performance of the global D-matrix algorithm. 
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Figure 8.15 - Standard deviation and bias of the global D-matrix 
winds as a function of buoy winds. 
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Figure. 8.16 - Standard deviation and bias of the global D-matrix - - 
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8.17 - Standard deviation and bias of the ~lobal D-matrix 
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TABLE 8.8 

COEFFICIENTS AND RELATIVE P E R F O W N C E  
OF THE BEST MULTICHANNEL D-MATRIX ALGOIUTHh4 

Should one of the four selected channels become inoperative, a 3-channel or 4-channel 
algorithm can be constructed which would perform as indicated in Table 8.9. All algorithms 
coefficients in this table were generated from the same data set used to make the global 
algorithm. 

In an attempt to get more accurate retrievals under rain-flagged conditions, special rain 
D-matrix algorithms were created and tested. These algorithms were constructed using a data 
set wntaining SSMII-buoy pairs that were rain-flagged either 1, 2 or 3. The results are shown 
in Table 8.10. Note that the low-frequency channels (19 and 22 GHz) were identified as being 
"best" for the 1 and 2-channel algorithms indicating that they are less attenuated by the rain than 
are the high-frequency channels. The SD of the rain D-matrix retrievals under rain-flag 1, 2 
and 3 conditions appear quite good. However, the results are misleading as indicated by Figure 
8-18. This figure shows that the best rain D-matrix algorithm is simply predicting a near 
wnstant wind speed of approximately 10 mls. The correlation coefficient associated with Figure 
8.18 is 0.53, indicating that the algorithm can account for only about 25% of the variance in 
buoy wind speeds. The global D-matrix performance on the same data set is shown in Figure 
8.19. A fair number of the global D-matrix retrievals in rain are quite good. This is expected 
since the algorithm was wnstructed using data that was rain-flagged either 0 or 1. Figure 8.19 
also shows that the rain-flagged retrievals are typically biased high and the correlation coefficient 
of 0.27 indicates that the global wind speed algorithm performs poorly in rain as did the special 
rain D-matrix algorithms. Based on this analysis, it can be wncluded that a special rain D-matrix 



Figure 8.18 - Performance ot the special 5-channel D-matrix 
algorithm designed for retrievals under rain-flag 
1, 2 and 3 conditions. 
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Figure 8.19 - Performance ot the global D-matrix algorithm 
under rain-flag 1, 2 and 3 conditions. 



TABLE 8.9 

GLOBAL WIND SPEED ALGORITHMS WHICH CAN BE USED 
IF THE SSMII LOSES A CHANNEL 

ALGOR. 

ID 

COEFFICIENTS 1 
CON 19V 19H 22V 37V 37H S.D. 

(3-Channel Algorithms) 

X ... 0.0072 -1.5642 
0.2613 . . . X -2.0413 
0.8133 ... -0.6816 X 
1.8278 ... -1.1173 0.0419 

(Revised 4-Channel Algorithms) - 

165.86 X 0.7208 -0.4729 -0.9091 0.2983 2.1 
213.29 1.0437 -0.5325 X -2.5612 1.3443 2.3 
93.68 -0.1989 1.1056 -0.7511 X -0.1703 2.5 

124.65 0.1256 0.9607 -0.7236 -0.5050 X 2.3 

"X" = Lost Channel 

algorithm is not required and that the global D-matrix algorithm should be used to calculate 
winds under all conditions. It should be pointed out that 45 of the data points in Figure 8.18 
do not appear in Figure 8.19 because the D-matrix values were above 50 mls. 

Although the D-matrix wind speed retrievals meet specifications under rain-free 
conditions, it has been suggested that an iterative-type algorithm might improve retrieval 
accuracy. Unlike the D-matrix algorithm, the iterative algorithms are based on a physical model 
which accurately predicts the effect that both wind speed and rain have on the measured 
brightness temperature. Since the rain-dependence is known, its contribution to the total 
brightness temperature can be effectively subtracted out making a more accurate wind speed 
retrieval possible under rain-free and light rain conditions. However, a fundamental limit on 
the retrieval accuracy of any wind speed algorithm is determined by the fact that microwave 
radiation at the selected SSMII frequencies is heavily attenuated by rain. More specifically, 
microwave radiation emitted from the ocean surface, which contains information from which 
wind speed is inferred, must pass through the water laden atmosphere before being measured 



I1 TABLE 8.10 

MULTICHANNEL D-MATRIX WIND SPEED ALGORITHM 
FOR RAIN-FLAG 1, 2, AND 3 CONDITIONS 

by the SSMII. If this important signal is attenuated to a level below the SSMII instrument noise 
then accurate wind speed retrievals are no longer possible. The rain rate at which accurate 
SSMII wind speed retrievals begin to degrade, regardless of the algorithm, seems to be about 
2 mmlhr. 

NO. OF 
CHAN. 

1 
2 
3 
4 
5 

SSMII wind speed retrieval accuracy in tropical storms, typhoons and hurricanes is 
limited not only by the rain associated with these storms but by the spatial resolutions of the 19, 
22 and 37 GHz channels (55, 49, and 32 krn). Wind speed gradients in the core regions of a 
storm are typically on the order of 2 mls per kilometer and can persist over a distance of 25 km 
or more. Any SSMII wind speed retrieval under these conditions would be a gross 
underestimation of the highest winds present in the resolution cell. 

In an attempt to gather additional high wind speed data for the validation, D-matrix 
retrievals were compared with aircraft reconnaissance observed wind speeds in the 15-25 mls 
range near typhoons Betty, Cary, Thelma, Vernon and Wynne. The reconnaissance flights were 
made during the typhoon season of 1987 by aircraft from the Air ForceINavy Joint Typhoon 
Warning Center. From this large set of data, less than 15 SSMII-aircraft data comparisons met 
the criteria of being within 25 km and within 30 minutes of one another. Since only a few of 
the 15 match-ups were for winds exceeding 20 mls, the results are considered statistically 
insignificant and are not shown. However, further analysis of this nature is needed to validate 
the high-wind (> 15 mls) performance of the D-matrix algorithm. 

CON 

32.98 
81.87 
78.02 
86.37 
79.72 

8.7 CONCLUSIONS 

Although wind speed retrievals from the original versions of the D-matrix algorithm did 
not meet the accuracy specification of Â 2 mls, regeneration of the D-matrix coefficients using 
standard linear regression resulted in an algorithm whose retrievals did meet specifications. 

19V 

... 
-0.5612 
-0.6193 
-0.8860 
-0.8291 

19H 

... 
0.2895 
0.3045 
0.4861 
0.4689 

22V 

-0.0979 
... 
... 
... 

-0.0324 

37V 

... 

... 
0.0597 
0.2471 
0.2862 

37H 

... 

... 

... 
-0.1270 
-0.1477 

S.D. 

3.6 
3.5 
3.5 
3.4 
3.4 



TABLE 8.11 

THE RECOMMENDED GLOBAL D-MATRIX ALGORITHM 

RAIN FLAG 

0 

CRITERIA ACCURACY 

An improved global D-matrix algorithm with a single set of coefficients has been 
developed which meets retrieval accuracy specifications but does not have the zonal discontinuity 
and high wind speed bias limitations found in the original 9-version D-matrix algorithm. 
Coefficients and rain-flag criteria for the global algorithm are given in Table 8.11. 

The rain-flag criteria was revised to be more restrictive and the global algorithm now 
uses four rain-flags, 0 thru 3, which indicate retrieval accuracy SD's of <2  mls, 2-5 mls, 5-10 
mls and > 10 mls, respectively. In light of this redefinition it is perhaps more appropriate to 
use the term accuracy flag instead of rain-flag. Approximately 85% of the time, all forms of 
the D-matrix algorithm can be expected to retrieve ocean surface winds with an accuracy of Â 
2 mls. The remaining 15% of the time, the scene will be rain-flagged and retrieval accuracies 
will be worse than + 2 mls. 
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9.0 LAND PARAMETER ALGORITHM VALIDATION AND CALIBRATION 

9.0.1 Data Storage and Software Development 

The calibration and validation of algorithms to retrieve land parameters from the SSMII 
passive microwave data required the development of databases for several land areas of the 
world. For example, test areas over tropical jungles, deserts, and agricultural areas were 
established for the development of land surface type classification rules. Additional test areas 
were developed in the United States where ground truth was available from surface observations. 

The Hughes Early Orbital Display System (HEODS) software was used for the selection 
of satellite overpasses for areas and dates of interest. The SSMII data of interest were furnished 
on 9 track, 6250 bpi magnetic tape from the Naval Research Laboratory. Data from the tapes 
were downloaded to files on a clustered computer system consisting of a VAX-8300, a VAX- 
8650, and a VAX-8800. The Sensor Data Records (SDRs) were pre-processed to strip them of 
inter-record blank spaces, header records, and other non-relevant information. These files, 
saved in the conical scan format for the test areas, were denoted as SCAN files. The SCAN 
files for the test areas were backed up on magnetic tape. Environmental Data Records (EDRs) 
were processed in a similar manner. Images were created from SCAN files for visual screening 
on an International Imaging System operated as a peripheral on a VAX-750. 

The SDR SCAN files, which consisted of the seven channels of microwave brightness 
temperatures and the latitude-longitude tags for each pixel, were then loaded into a relational 
database, RDB. Latitude and longitude, the "relation" of the RDB, was used to facilitate the 
development of the ground truth data base coincident with the SSM/I database. With the 
specification of latitude and longitude coordinates, all SSMII and ground truth data could be 
assembled as one file. 

Data sets of coincident SDRs and ground truth were extracted from the RDB in the form 
of one-half degree latitude and longitude cells. These CELL files contained the average of all 
data with a latitude-longitude location in the cell. Some CELL files were also created for one- 
quarter degree latitude-longitude boundaries. SPOT files were created by matching the closest 
SDR file of seven channels of brightness temperatures with a specified latitude and longitude. 

The primary source of ground truth consisted of climatological data from the National 
Oceanic and Atmospheric Administration (NOAA) cooperative observer network. The 
Summaries of the Day Elements (TD3200) from the reporting stations were provided on 9 track, 
6250 bpi magnetic tape from NOAAINESDIS, AsheviUe, NC. These daily elements included 
maximum and minimum air temperatures, rainfall or water equivalent of snow, daily snow 
depth, and total snow accumulation. GOES satellite imagery from the Department of 
Meteorology at Texas A&M University was used to visually screen the data for cloud and 
synoptic weather conditions. 



9.1 LAND SURFACE TYPE CLASSIFICATION SCHEME 

9.1.1 Rationale for New Classification Rules 

The EXTLND module, described in the SSMII User's Guide [I], is a subset module of 
the entire environmental parameter extraction software. Surface types over land are classified 
within EXTLND using SDR brightness temperatures so that appropriate parameter extraction 
algorithms are used. Initial analysis of EDR's resulting from the original EXTLND algorithms 
indicated numerous misclassifications with respect to land surface types. One of the most 
common misclassifications was the indication of rain when no rain or clouds were present in the 
scene. This was due to a flag within the original EXTLND logic which compared the brightness 
temperatures in the 37 GHz and 19 GHz channels. If the 37V brightness temperatures were less 
than 19V brightness temperatures, a heavy rain event was classified. However, over naturally 
occurring surfaces such as vegetation, bare soil, and deserts, the brightness temperatures at 37V 
GHz were frequently found to be less than those at 19V GHz. 

In addition to misclassification within the EXTLND logic, it was imperative that surface 
types be differentiated prior to the creation of calibrationlvalidation databases. The reasons 
were: 

1. The calibrationlvalidation project required parameter extraction algorithms over 
different surface types. Some extraction algorithms are mutually exclusive, such as surface 
moisture and snow parameters, but require the proper identification of those conditions. Other 
surface types such as standing water, do not require the extraction of surface parameters. In 
addition, during the course of an annual cycle for an agricultural region, such as winter wheat 
production areas, a natural change in the land surface type occurs. Surface conditions would 
begin with dry snow in the middle of the winter. The snow would undergo morphological 
changes and additional accumulation in the snow accumulation phase. With the onset of warmer 
weather, the snow would enter the ripening phase, again with pronounced responses in the 
microwave frequencies and polarizations. With complete snow melt, a flooded or wet soil 
surface may occur. Spring tillage or greenup of winter grains would be associated with arable 
land, with varying degrees of soil moisture. Increases in vegetation canopy density would 
decrease the response to soil moisture, but theoretically should increase the accuracy of the land 
surface temperature retrieval. From harvest to snow accumulation, the cycle continues with bare 
soil, developing canopy of the winter wheat, frozen and unfrozen soils, and snow accumulation. 
Rains and varying atmospheric water vapor and liquid water contents occur throughout the entire 
year. 

2. Over land, there may be a large variability of natural surface types within an SSMII 
footprint. These include different degrees of vegetation cover, topographic characteristics, and 
the presence of water bodies such as lakes and reservoirs. Water bodies can increase the noise 
in parameter extraction regression data sets for surface moisture and land surface temperature 
if included. As they have a distinct detectable signature in the 85.5 GHz channels, their 



classification and removal from the data sets would ultimately increase the confidence in 
parameter retrievals. 

3. The surface moisture retrieval algorithm was based on an apparent emissivity 
(19Hl37V). The degree of vegetation cover within a footprint affects the sensitivity of this 
variable with respect to moisture at the soil surface, thus requiring further categorization. 

9.1.2 Land Surface Tvpe Classification Methodology 

9.1.2.1 Observations 

The approach used in the development of the classification rules can be considered a 
combined physicallstatistical method. Channel brightness temperature and polarization 
differences along with statistically determined threshold values were used to form the rules. For 
a particular surface type, the channel combination or polarization difference selected had a 
microwave physical basis. The basic land surface types developed were selected to function with 
the land surface parameter extraction algorithms being validated in a parallel effort and presented 
in Sections 9.2, 9.3 and 9.4 of this report. Additional land surface classes are possible, but 
would probably be subsets of the major classes presented herein or anomalous cases. 

Methodology 

The CLIPS expert system environment, created by NASA, was used to develop the land 
surface type classification algorithms. An expert system environment was selected for this 
purpose because it facilitated the addition, removal, or modification of rules as well as brightness 
temperature and polarization difference thresholds without the necessity of recompiling the 
software code. The CLIPS shell and the rules for classification were embedded within a main 
program module written in the C programming language. 

The initial set of classification algorithms incorporated the logic and thresholds of the 
original EXTLND module, described in the SSMII Users Guide [I]. These classification 
algorithms, and their subsequent modifications, were used to classify various land surface types. 
Images of the classifications were used in conjunction with geographical and natural resource 
maps to determine the accuracy of the classification scheme. 

Training areas were selected for the various surface types in different regions of the 
world and the United States. For example, control areas in the Amazon and Congo jungles were 
used to identify the characteristic microwave signature of dense vegetation in the SSMII 
channels. Control areas in the Sahara and Sonoran deserts were used to identify the desert 
signatures. A summary of the main training (control) areas is shown in Table 9.1. 

SDR data from several orbits over these training areas were grouped according to 
overpass time, cloud condition, and season. The SDR data used consisted of the seven 
brightness temperatures of the A scan concentric footprints. The value for the 85.5 GHz 



channels assigned to the concentric footprint consisted of an average of the surrounding eight 
85.5 GHz footprints from A and B scans. Several combinations of SDR brightness 
temperatures with respect to frequency and polarization differences were calculated. These 
combinations are shown in Table 9.2. 

Basic statistics of brightness temperatures and polarization differences were obtained for 
each surface type. These basic statistics included mean, standard deviation, mode, skewness, 
distribution type etc. A set of new rules, identified through the statistical analysis, were 
developed based on brightness temperatures, brightness temperature combinations, and 
polarization differences. New rules were added to the expert system module and tested against 
independent data sets. These data sets were either for different geographical areas with similar 
characteristics or for different seasons. 

Another source of ground truth information for the validation of classification rules was 
the major land resource area (MLRA) classifications of the Soil Conservation Service [2]. These 
classifications grouped areas with similar characteristics with respect to topography, natural 
vegetation, land use, climate, soils and water resources. 

TABLE 9.1 A SUMMARY OF SOME CONTROL AREAS USED IN SURFACE TYPE 
IDENTIFICATION 

Control Area Surface Type Location Boundaries 

A Dense Vegetation Amazon Jungle NW Comer: 2's 54'W 
SE Comer: 4"s 52'W 

B Dense Vegetation Congo Jungle NW Comer: l0S 20Â° 
SE Comer: 3's 23'E 

C Dense Vegetation Amazon Jungle NW Comer: SOS 69"W 
SE Comer: 8's 66OW 

Amazon Basin Dense Vegetation Amazon NW Comer: OOS 64OW 
SE Comer: 10's 5O0W 

MLRA #I30 Dense Vegetation Appalachian NW Comer: 36.3ON 83"W 
SE comer: 35.3"N 82OW 

Appalachian Dense Vegetation Appalachian NW comer: 40Â° 87OW 
Forest SE comer: 33'N 80Â° 
Central Plains Mixed Vegetation United States NW Comer: 50Â° 105OW 

& Soils SE Comer: 32ON 95' W 
MLRA #30 Semi-Arid Veg. & Mojave Desert NW comer: 35S0N 118OW 

Soils California SE comer: 34S0N 116"W 
Sahara Desert Sahara, Libya NW comer: 16ON 18OE 

SE comer: 14'N 21Â° 



TABLE 9.2 COMBINATIONS OF MICROWAVE BRIGHTNESS TEMPERATURES USED 
FOR THE CHARACTERIZATION OF LAND SURFACE TYPES 

(T22V - T19V) [a] (T19V + T37V)/2 - (T19H + T37H)/2 [b] 

(T85V - T37V) [dl (T85H - T37H) [el 

(T37V - T37H) [ fl (T37H - T19H) 01 

(T19V - T19H) [iI (T85V - T85H) M 

Letters in brackets [ ] indicate how the combination is referred to 
throughout the text. 

9.1.3.1 Dense Vegetation 

Emission by a vegetation canopy consists of contributions from the vegetation layer as 
well as from the underlying soil surface [3]. At the SSMII channel frequencies (19.35 GHz and 
greater), vegetation canopies can be treated as semi-infinite mediums with respect to emission 
properties. According to Ulaby et al. [3], the brightness temperature of a weakly scattering 
media above a semi-infinite medium can be simplified to: 

where: 

I', = the air-soil reflectivity 
L(9) = the loss factor of the vegetation canopy 
a = single-scattering albedo of vegetation 
T, = physical temperature of the vegetation layer 
T, = physical temperature of the soil surface 
9 = incidence angle 
p = polarization index equal to v or h 

The loss factor L(9) depends on the height of the vegetation layer, the incidence an1 ,-- 
and the microwave frequency. ~ o r  frequencies above 10 GHZ, the optical thickness is large and 
L(9) > > 1. Equation (1) can then be approximated by: 



This implies that the canopy brightness temperature is independent of the incidence angle 
9, and of antenna polarization if a is isotropic. This has certainly been true for the SSM/I 
frequencies in the case of very lossy canopies such as dense jungle. Brightness temperature 
polarization differences at all frauencies have been very small for pixels over the Amazon and 
congo jungles. However a dependence of brightness temperature with frequency has been 
observed which implies that equation (2) is only a first-order approximation of the emission from . . - - 
vegetation for the ~ M / I  frequencies. 

Table 9.3 summarizes the main statistics for selected channel combinations over dense 
vegetation control areas. These locations, selected from natural resource maps, avoided large 
rivers and lakes. Figure 9.1 shows a histogram of average brightness temper&& polarization 
differences in the 19.35 and 37.0 GHz frequencies for combined ascending and descending 
overpass data over control areas A and B in the Amazon region. The distribution was close to 
a normal distribution with a mean polarization difference of 0.67 K (combination [b] in Table 
9.3). Brightness temperatures in the 37.0 V GHz channel were on the order of 4 K lower than 
in the 19.35 V GHz channel while the 85.5 V GHz brightness temperatures (TÃˆs were around 
2 K higher than in the 37.0 V GHz channel. No physical explanation was found for this "dip" 
in the 37 GHz brightness temperatures over dense vegetation. 

By selecting twice the standard deviation as the upper and lower limits for the normal 
distribution of brightness temperature combinations shown in Table 9.3,96% of all occurrences 
will fall between those limits. Based on these results for the three control areas over dense 
vegetation, the upper limit of average brightness temperature polarization difference in the 19.35 
GHz and 37.0 GHz (combination [b]) was set at 1.9 K. The lower limit was around -0.4 K 
using the same rationale. Although true negative polarization differences are physically 
impossible from horizontal surfaces a small amount of such cases were observed in the SSMII 
data over dense vegetation. This could be due to random noise within the individual channels. 
As the energy being emitted from dense vegetation is essentially depolarized, it is possible that 
the brightness temperatures in the horizontal channels can become greater than in the vertical 
channels on some occasions, but still be within the acceptable variability of the instrument. A 
second possible explanation involves the structure of jungle vegetation. Microwave energy 
emitted from dense vegetation will be isotropic. If any predominant orientation is present in the 
vegetation, the emitted energy will have polarization differences. For a tropical rain forest, the 
tall, vertical tree trunks could provide the predominant orientation. If this were the case, the 
frame of reference for the horizontal and vertical polarizations would reverse. The largest 
component of the emitted radiation would be in a plane perpendicular to the vertical tree trunks. 
For the frame of reference of the vertically and horiwntally polarized brightness temperatures 
of the SSMJI, the horiwntally polarized brightness temperature could exceed the vertically 
polarized brightness temperature. Based on the combinations shown in Table 9.3 as well as 
statistics for single channels, the rule to classify dense vegetation becomes (all thresholds and 
temperatures in Kelvin): 



TABLE 9.3 S-L ANALYSIS KkiSuL1.S HJK 
TEMPERATURE COMBINATIONS OVER DENSE VEGETATION CONTROL 
AREAS 

zn' - 1YV [a] 1.13 -4.00 0.52 

( 1 9 ~ + 3 m  - ~ 9 ~ x 3 7 1 9  U.67 US3 1.73 58D, 59A 
2 2 

3'm - 1YV [c] -4.28 0.7U - y987) 

m - 37v 
76D, 178D 

[dl 2.46 1.23 U.W 4 . n  222A, 242A 

- 37H 
243A, 250A 

[el 2.58 1 .U3 US2 4.64 

UL A W  C 

2 2 

180A, 222A 
231A 

A X  231A 

AMAZON BASIN 

MLRm"l3u palachian Forests 
Man SD &II SD 

L L 

247D 

37v - 1YV 
225A 

[c] 0.77 0 .X  227A 
244A m - 37V [dl 1.89 1-01 1.89 1.03 245A 

- 37H 
248A 

[el 2.19 0.80 1.96 1.10 250A 



Dense Vegetation 

Figure 9.1 Distribution histogram of average polarization in the 19.35 GHz and 37.0 GHz 
channels over dense vegetation. 

Conditions [a] and [el check for the presence of large quantities of water on the surface 
within the footprint and will be discussed later. Condition m] is the check for low polarization 
differences, the characteristic microwave signature of dense jungle vegetation. Condition [dl 
is a precipitation flag and is based on the lower limit for this channel combiiation shown in 
Table 9.3. The adjusted threshold of -1 K is suggested instead of 0 K (lower limit for the 
distribution shown in Table 9.3) to ensure that only precipitating clouds are classified for the 
precipitation over vegetation rule, also discussed later. Condition k ]  is a check for above 
freezing temperatures in the vegetation canopy (for a single-scattering albedo of 0.04). 



Table 9.3 also presents brightness temperature combination statistics for additional (and 
independent) orbits over control area C of the Congo Jungle and a scene encompassing a large 
portion of the Amazon basin. For the latter scene, data corresponding to footprints sensing 
rivers and other non-vegetation classifications were removed from the data set. These results 
are not significantly different from those of control area A and B. Results from the independent 
data confirm that this rule properly classifies dense vegetation situations. 

In the United States, the closest vegetative covers to dense tropical jungles are found in 
the hardwood forests of the Appalachian mountains. SSMII data obtained over a small area of 
the Appalachian mountains as well as the Major Iand Remum Area (MLRA) #I30 are also 
shown in Table 9.3. The MLRA 130 resource region consists of dense forests of different oak 
varieties, white pine, hemlock, red spruce, balsam fir and several species of understory 
vegetation [2]. The polarization differences were about 1 K greater than for the dense jungle, 
and resulted from a lower density canopy. 

9.1.3.2 Dense Agricultural Crops and Rangeland Vegetation 

This rule applies in situations where soil is totally or partially covered by vegetation 
within an SSWI footprint. Such occurrences are common in agricultural regions with crops at 
different stages of growth or canopy cover; on rangeland with grasses and shrub type vegetation 
at peak growth, or on combinations of these. This category of vegetation is still considered 
dense with respect to surface soil moisture retrievals. As discussed in section 9.3 of this report, 
the sensitivity to surface moisture is very small for average polakzations in the 19.35 GHz and 
37.0 GHz of less than 4 K, rendering retrievals physically impossible. Examples of such regions 
are: 

Agricultural areas and grasslands of the Central Plains of the U.S. and some 
rangeland of the western U.S. at peak vegetation cover. 

The "cerrado" vegetation region of central Brazil. These are savanna type areas 
with extensive grasslands mixed with small trees and shrubs. 

3. The Savanna regions of Africa at peak vegetation cover. 

The green vegetation density, which can be quantified by the Leaf Area Index (LAI), will 
vary considerably throughout the year in these regions, according to season. The peak LA1 for 
an agricultural region in the Central Plains can occur during the months of May through August, 
depending on the latitude and type of vegetation, and if the vegetation is growing under natural 
precipitation or imgation (crops). Vegetation densities in grasslands and savannas will also vary 
according to the precipitation amount and distribution throughout the year. 

Table 9.4 shows the mean and standard deviations for some of the main SSMII channel 
combinations required for characterizing dense agricultural and rangeland vegetation. 



TABLE 9.4 hEAN AND STANDARD DEVIATIONS FOR BRIGHTNESS TEMPERATURE 
COhfBINATIONS OVER DENSE CROPLANDIRANGELAND VEGETATION 
C O W  IN DIFFERENT AREAS OF THE WORLD 

Central Plains Cerrado Region African Savannas 
Combination Mean SD Mean SD Mean SD 

6) 6) 6) 6) 6) 6) 

22V - 19V [a] -1.12 1.24 -0.12 1.03 -2.49 0.98 

The dense agricultural and rangeland vegetation can be classified using the following rule: 

The 4 K upper threshold for the average polarization in the 19.35 GHz and 37.0 GHz 
channels, though slightly lower than the mean plus mice. the standard deviation limit for that 
distribution (approximately 4.2 K), is the polarization above which sensitivity to surface moisture 
begins to occur (see Section 9.3). 

9.1.3.3 Soil Rules 

Passive microwave emission from a water surface is highly polarized, with an emissivity 
of about 0.4 for the 19.35 GHz horizontally polarid channel. The emission from bare soil is 
also p o l d ,  but to a lesser extent, with higher emissivities (typically 0.9 and above in the 
horizontal channels for a dry surface). The influence. of water in an essentially bare soil is to 
depress the brightness temperatures and to increase the polarization difference. If vegetation 
is present, the vegetative scatkring decreases the polarization difference. Therefore, the soil 
rules were developed to classify a dynamic combination of bare soil, water in or on the soil 



surface, and different degrees of vegetation cover. The natural vegetation cover varies as a 
function of season and the sod water content. The water present on the soil surface varies as 
a function of the rainfall and the hydrologic response. The net effect is a broad range of 
brightness temperatures and polarization differences within this class. These ranges arc a 
function also of frequency due to the variation of the real component of the dielectric constant 
with frequency. The dielectric constant of water is higher at longer wavelengths (lower 
frequencies). The depth of the emitting layer is also greater at the longer wavelengths. 

An SSMII footprint with decreasing vegetation cover is characterized by average 
polarization differences at 19.35 GHz and 37 GHz ranging from 4 K to 19 K, with polarization 
increasing as more soil is "radiometrically" visible. This range was divided into two large sub- 
groups. The arable soil classification with average polarization differences from 4 K to 9.8 K 
(using 19.35 and 37.0 GHz channels) and the semi-arid classification with average polarization 
differences ranging from 9.8 to 19.0 K. This was done because most SSWI footprints in the 
latter group were identified from regions found in the western United States (Arizona, 
Nevada, Utah, and California) in which a semi-arid, desert climate is predominant, and 
vegetation is sparse. 

During the development of the surface moisture retrieval algorithms it was determined that 
the two large polarization sub-groups mentioned above needed to be further broken down 
according to vegetation density. This was due to the effect of vegetation density on the 
sensitivity to surface soil moisture and the need for different retrieval equations amrding to this 
sensitivity. This will be further explained below under the moist soil rule. 

9.1.3.3.1 D q  Arable Soil 

The average 19.35 and 37.0 GHz brightness temperature polarization differences are 
shown in Figure 9.2 for the Central Plains of the United States under the arable soil heading. 
Statistics are shown in Table 9.5 for the summer and winter season separately. Eoo tp~ t s  
influenced by rain, snow, water or dense vegetation cover were removed. The larger influence 
of vegetation during the summer season due to natural vegetation and crop cover is evident by 
the lower mean of combination PI. During the winter, the soil is mostly bare which results in 
significantly larger polarization differences in the 19 GHz and 37 GHz channels. The upper 
and lower limits contained in Table 9.5 for both seasons were used to define the range of 
polarization for arable soil. Thus, the classification rule for dry arable soil is: 

Conditions [a] and [el check for flooded conditions or large water bodies and will be 
discussed later. Condition @J] classifies the area in terms of brightness temperature polarization 



differences, condition [c] is a snow flag which will be discussed later, and condition [dl is a rain 
and surface moisture flag which also will be discussed later. 

TABLE 9.5 BRIGHTNESS TEMPERATURE COMBINATION VALUES FOR THE 
CENTRAL PLAINS STATES OF THE U.S. CORRESPONDING TO THE 
ARABLE SOIL CLASSIFICATION 

Box size: NW comer: 50Â° 105OW SE comer: 32ON 95'W 

SUMMER SEASON 

Combination Mean SD Lower Upper Calendar 
Limit Limit Date and 

(K) (K) (K) (K) Node 

19V - 22V [a] -1.90 1.31 -4.52 0.72 

- - 

WINTER SEASON 

{19V+37V) - fl9H+37H) [bl 7.34 1.27 4.80 9.88 



The semi-arid classification corresponds to areas where natural vegetation is sparse and 
of a desertic type. A typical example of this type of environment is MLRA region #30 [2], the 
Sonoran Basin and Range. Most of this area is government owned and consists of thin stands 
of desert vegetation, mostly Bursage, Joshua tree, juniper, yucca, and cactus. Grasses grow 
only in years with favorable moisture conditions. The histogram of the brightness temperature 
polarization difference distribution is shown in Figure 9.2. Table 9.6 contains the statistics for . - 
the main channel combinations. 

Polarization Dependence of Different 
Surface Types 
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Figure 9.2 ~ 6 i a r i k t i o i  dependence in the 19:% GHZ and 37.0 G H ~  channels to different 
surface types. 

Based on the estimated upper and lower limits, the threshold values for the channel 
combinations which best classify semi-arid conditions are: 



TABLE 9.6 STATISTICAL ANALYSIS RESULTS FOR SELECTED BRIGHTNESS 
TEMPERATURE COMBINATIONS OVER SEMI-ARID AREAS, MLRA 
REGION #30, BASED ON DATA FROM 19 ORBITS 

Combination Mean SD Lower Upper 
Limit' Limit' 

(K) (K) (K) (K) 

22V - 19V [a] -2.08 3.60 -9.28 5.12 

09V+37W - (19H+37H) [b] 
1 1 

13.61 2.02 9.57 17.65 

'Limits are 2 standard deviations from the mean. 

Condition [a] is the check for large water bodies and flooded conditions. The lower limit 
for the polarization difference (combination [b]) was 9.57 K while the upper limit for arable soil 
(Table 9.5) was 9.88 K during the winter season. An intermediate value of 9.8 K was used as 
the dividing threshold between the dry arable soil and semi-arid classes. Large negative values 
can sometimes be observed in the vertical polarization channel differences of combinations [c] 
and [dl. This is the result of a surface scattering phenomena caused by smooth bare soil which 
could be confused with atmospheric scattering or scattering due to snow cover. The upper limit 
of combinations [dl and [el are the thresholds between dry and moist soil and will be discussed 
later. Condition [j] is also a moisture flag which differentiates dry soil surfaces from wet snow 
surfaces. 

9.1.3.3.3 Desert Rule 

Deserts are characterized by very large brightness temperature polarization differences 
in all channels. The distribution histogram of average polarization differences in the 19.35 GHz 
and 37 GHz channels is shown in Figure 9.2. The statistics for several orbits over the control 
area are shown in Table 9.7. Polarization differences in the 19.35 GHz channel were, in some 



cases, above 40 K, and in the upper 30s (K) for the 37.0 GHz channel. These extreme 
polarization differences are caused by very smooth, sandy surfaces in the Sahara desert and the 
total absence of vegetation cover. The relatively high dielectric constant of quartz, the dominant 
component of desert sand, undoubtedly contributes. 

TABLE 9.7 STATISTICS FOR SELECTED BRIGHTNESS TEMPERATURE 
COMBINATIONS OVER THE SAHARA DESERT CONTROL AREA 

Combination Mean SD Lower Upper Calendar 
Limit' Limit' Date of 

(K) (K) (K) (K) Overpass 

(19V+37V) - (19H+37m [b] 32.24 3.46 25.48 39.32 233A 
2 2 

85V - 37V [dl -9.26 2.24 -13.74 -4.78 176Dl178D 
224D1232D 

85H - 37H [el 5.77 2.33 1.11 10.43 233D 

'Limits are 2 standard deviations from the mean. 

The classification rule is: 

Condition [b] is the primary discriminator for deserts with 19.7 K being the upper limit 
for the semidesertic regions considering three standard deviations from the mean (Table 9.6). 
Brightness temperatures in the vertical polarization channels decreased with increasing 
frequency, with large negative values occurring for combinations [c] and [dl in Table 9.7. 
These large negative values could be confused with scattering due to heavy rain or snow cover. 
For this reason, combination [el is used as an additional check. If 85H - 37H is greater than 
-1 K, the decrease in brightness temperature in the vertical polarization channels is due to 
surface phenomena and not atmospheric scattering. Combination [g] also ensures a snow free 
surface. 



9.1.3.4 Classification of Surface Water and Soil Moisture 

The short wavelengths of the SSMII sensor are not suited for soil moisture retrievals due 
to their small penetration depth in soils and consequently small moisture sensing depth. In 
addition, there is a considerable loss of sensitivity to surface moisture due to vegetation cover. 
However, under sparse or incomplete vegetation cover, an assessment can be made of the 
quantity of water retained on the surface after a heavy rainfall event as well as moisture in the 
immediate soil surface layer down to a few millimeters. In Section 9.3, a specific 
quantification of this surface moisture is conducted using an Antecedent Precipitation Index 
(API) as a surrogate variable. 

The main SSMII channels used for surface moisture retrievals are the 19.35 H GHz and 
the 37.0 V GHz channels in the form of a normalized brightness temperature T19HIT37V. 
However, the 85.5 GHz channels have turned out to be excellent for identifying the presence 
of water bodies within the SSMII footprints. As the proportion of moist soil and surface water 
within an SSM113 db footprint increases, the emissivity of the surface layer decreases resulting 
in lower brightness temperatures. Relative changes are first observed between the 85.5 GHz and 
the 37.0 GHz channels in both polarizations: the Tb's decrease in both channels but to a greater 
extent at 37.0 GHz due to the fact that both the permittivity and the dielectric loss factor of 
water are smaller at 85.5 GHz than at 37.0 GHz [4]. It is important to note that these relative 
changes in Tb's between the two channels are occurring because the resolution of the 85.5 GHz 
channels (approximately 14 km) was decreased to that of the 37.0 GHz channels (approximately 
33 tan) as a result of the averaging scheme. In this way, both channels were sensing 
approximately the same proportions of water, soil and vegetation in the concentric footprint 
scenes. 

Moist soil surfaces and footprints containing larger water bodies therefore are 
differentiated from dry surfaces with the 85.5 V - 37.0 V and 85.5 H - 37.0 H channel 
combinations. Several classification rules were developed to identify surface moisture and 
surface water bodies (flooded soil, moist soil surface, composite water and soil or wet soil 
surface, composite water and vegetation). The classification of footprints containing water 
bodies such as reservoirs, lakes etc. and their removal from the parameter retrieval algorithm 
regression data sets, decreases the introduced noise and increases the retrieval accuracy of 
parameters such as land surface temperature over soil and vegetation, assuming the same 
classification scheme is used operationally. This is because the brightness temperature of a 
footprint containing a water body would not be lower due to the lower physical temperature of 
the soil or vegetation but as a result of the contamination by a surface with completely different 
microwave emission properties. 

9.1.3.4.1 Moist Soil Surface 

Moist soil surfaces are differentiated from dry arable soils using a threshold value of 0.5 
K for combination [dl. This value was approximately the upper limit for this combination under 
dry arable soil conditions (Table 9.5). In order to differentiate moist soil surfaces from very 



wet soilsurfaces or footprints containing larger water bodies, an upper threshold value of 4.0 
K is used for wmbination [dl and 4.2 K for wmbination [el, 85H - 37H. The rule is: 

where combination [c] is a snow identifier. 

The moist soil surface rule was tested along with other moisture sensing rules by 
stratifying 0.25 degrees latituddlongitude grid cells according to AH,, (based on available water 
for evaporation of 15 mm) values between 0 and 10 mm and greater than 10 mm as well as the 
number of days since the last precipitation event in each of those classes. These variables are 
defined and explained in the methodology of Section 9.3 of this report. Table 9.8 summarizes 
the results. 

As expected, 90.5 % of the dry soil classifications (DS) had API15 values of less than 10 
mm in those grid cells with an average of 2.7 mm. On the other hand 9.5 % of the dry soil 
classifications had APIn values greater than 10 mm with an average value of 16.8 mm. Most 
of these cases were probably due to localized precipitation events that did not entirely wet the 
soil surface of the large SSMII footprint. 

Moist soil surface classifications (MS) occurred for APII5 values less than 10 mm, 83 % 
of the time with an average value of 3.2 mm. The remaining 17 % of the values above 10 mm 
had an average API,5 value of 16.4 mm. 

These results are similar to the dry soil classification rule, indicating that spatial 
distribution of moisture is obviously a factor. In addition, this rule will also sometimes classify 
footprints which contain small bodies of water such as small lakes and reservoirs as moist soil. 

9.1.3.4.2 Composite Soil and Water or Wet Soil 

The development of this rule became necessary to identify footprints with locally flooded 
soil, lakes, large rivers, and other surface waters. These land footprints with water as a 
component of the land surface would have a passive microwave signature that is a combination 
of land and water. Because water has a much lower emissivity and a much higher polarization 
difference than other land surfaces, the resulting brightness temperatures would be very difficult 
to interpret in terms of physical surface temperature. This rule was developed to exclude 
footprints with a water component in the signature from the calibrationlvalidation regression 
database, thus increasing the accuracy of the algorithms. 



Several dozen cases were examined over the course of our calibrationlvalidation effort. 
Comparisons were conducted between brightness temperatures from footprints on the border of 
large lakes or which contained small water bodies, with non-contaminated surrounding 
footprints. Surface physical temperatures were compared as well when available. Possible 
SSMII footprint geolocation errors were also taken into consideration in this analysis. Both 
85.5 GHz channels were sensitive to the presence of water in the footprint, especially the 85.5 
H channel. The 85.5 H - 37.0 H Ta difference is a small positive or negative number for a 
mixed soil and vegetation scene (Tables 9.3,9.4 and 9.5). With a certain proportion of water, 
the emissivity is lowered in both channels, but to a greater extent at 37.0 H GHz due to the 
higher dielectric constant of water at 37.0 GHz. A threshold value of 4.2 K was determined for 
this channel combination. Over deserts, values greater than 4.2 K have been commonly 
observed (Table 9.7). Therefore the 85.5 V - 37.0 V combination is checked as well to prevent 
misclassifications. 

Combination [a] is the check for flooded surfaces. Condition [b] identifies large 
polarization differences due to water in the 3 dB footprint. To differentiate between large 
polarization differences due to water and those associated with barren deserts, condition [dl is 
applied. 

Footprints classified by this rule, were tested against ground truth API15 values gridded 
at 0.25 degree latitudellongitude cells for the central plains area of the U.S. during 1987. Fifty 
orbits were included in the analysis. The results are also shown in Table 9.8. and indicate that 
footprints with high API15 values are also classified by this rule. The results were more evenly 
distributed with 58 % of the grid cells having AHi5 values less than 10 mm (average of 4.0 mm) 
and 42 % having values greater than 10 mm (average of 21.3 mm). It is probable that most of 
the grid cells with moisture values less than 10 mm were a result of contamination by water 
bodies while for APII5 values greater than 10 mm, most of the classifications resulted from a 
wet soil surface. 

Footprints with a wet soil surface have a similar microwave signature to dry soil 
footprints contaminated by large water bodies. This presents a problem for the use of the 
surface moisture retrieval algorithms which should be applied to retrieve moisture when the 
API,, is high but not to the latter case. The solution is to maintain orevious surface 
classifications over a geographic location in a dynamic database and use additional logic to 
differentiate between these cases. In Section 9.3 of this rmrt .  a dynamic database scheme is . . 
proposed to work in conjunction with the surface moisture classifickon rules above. 



TABLE 9.8 STRATIFICATION OF CLASSIFIED 0.25 DEGREE GRID CELLS 
ACCORDING TO SURFACE MOISTURE VALUES (API,,) AND NUMBER 
OF DAYS SINCE LAST PRECIPITATION EVENT 

Classification APIis < 10 mm AHis > 10 mm 
Rule Number of days since last precipitation event 

1 2 3 4 5 > 5  1 2 3 4 5  >5 

DS NO: 251 248 313 392 297 868 68 82 55 32 11 2 
API,,: 4.1 4.2 4.0 3.3 2.7 1.1 18.1 18.8 15.0 13.6 12.4 11 

MS NO: 287 313 367 373 302 997 138 134 115 77 45 20 

WS NO: 462 342 317 286 180 625 707 429 266 130 38 14 

WV NO: 549 430 403 299 271 1328 703 376 236 128 36 18 
API,,: 5.3 5.3 4.6 4.1 3.7 1.1 25.1 22.3 19.5 19.6 19.3 22.2 

DS = Dry Arable Soil 
MS = Moist Soil Surface 
WS = Wet Soil Surface or composite soil and water 
WV = Vegetation with wet soil background or wmposite vegetation and water 
NO: Number of occurences 

9.1.3.4.3 Composite Dense Vegetation and Water 

This rule classifies footprints with mixed dense vegetation and water. It is similar to the 
composite soil and water rule, but with different threshold values. Dense vegetation has a strong 
unpolarized signature with usually warm brightness temperatures. On the other hand, water has 
a low emissivity, thus colder brightness temperatures, and a highly polarized signature. 
Depending on the proportions of water and vegetation as well as the density of the vegetation, 
the average polarization in the 19.35 GHz and 37.0 GHz channels (combination Dl) will vary. 
By observing numerous cases the upper threshold value of 6.4 K was determined, allowing for 
greater polarizations induced by water in the footprint scenes. The rule is: 



The threshold value for combination [el was based on observations of vegetationlriver 
footprints in the Amazon jungle and is approximately the upper limit obtained for this 
combination over the dense vegetation control areas (Table 9.3). Combination [dl is the 
precipitation flag and condition [h] is a snow flag. 

This rule was also tested along with the other moisture sensing rules in Table 9.8. 
Results indicate that 69 % of the grid cells were classified as such, having an API,5 value of less 
than 10 mm (average 3.3 mm). The remaining 31 % of the grid cells resulted in an average 
AH,< value of 22.9 mm, indicating that the rule is also sensing vegetation with a wet soil 
background. 

9.1.3.4.4 Flooded Soil 

Large amounts of water on the soil surface due to a heavy precipitation event, flooding 
due to heavy rain or melting snow or the presence of large natural lakes and reservoirs, will 
lower the brightness temperatures at all frequencies due to the high permittivity of water. 
Brightness temperatures at 22.235 V GHz will be greater than at 19.35 V GHz because the 
microwave emissivity of water increases with frequency and both channels have approximately 
the same 3 db footprint size. In addition, the 22.235 GHz channel is sensitive to water vapor. 
A threshold value of 4 K was determined for the difference between the 22.235 V GHz and the 
19.35 V GHz brightness temperatures based on observations of large lakes and reservoirs and 
areas flooded by large precipitation events. This condition [a] is checked within all classification 
rules. If the surface is classified as flooded, no parameter retrieval algorithms are applied. 

9.1.3.5 Classification of Precipitation Events 

9.1.3.5.1 Rain Over Vegetation Rule 

Precipitating or convective type clouds within an SSMII footprint over vegetation will 
have a drastic effect on the 85.5 GHz brightness temperatures. Clouds containing large water 
droplets and/or ice will scatter radiation at smaller wavelengths resulting in lower brightness 
temperatures at 85.5 GHz than at the smaller frequency (longer wavelength) channels. This is 
especially true over warm, dense tropical vegetation. 

Numerous storms were identified through SSMII data and confirmed by visual analysis 
of GOBS imagery and/or by checking NOAA precipitation charts over the United States. f i e  
microwave signature of a large thunderstorm over the Amazon jungle is shown in Table 9.9. 
The brightness temperature combination data for clear conditions on calendar days 180 and 231 
were similar to the expected microwave signature over dense vegetation shown in Table 9.3. 
The polarization difference (combination [b]) was higher because footprints which had other 
classifications, i.e footprints containing surface water, but which fell within the selected area, 
were included. 



TABLE 9.9 EFFECT OF LARGE PRECIPITATING STORM CLOUDS OVER DENSE 
VEGETATION ON SELECTED BRIGHTNESS TEMPERATURE 
COMBINATIONS 

Amazon Jungle, South America. Box boundaries: 
NW comer: 6.5's 59OW SW comer: 8's 57Â¡ 

CD180 Asc. CD222 Ax. CD231 A x .  
Combination Mean SD Mean SD Mean SD 

6) (K) (K) (K) (K) (K) 

(19V+37V) - (19H+37m [b] 1.17 1.02 1.26 0.87 1.46 0.96 
2 2 

With the presence of storm clouds on day 222, the temperatures in the 85.5 GHz 
channels were depressed below the brightness temperatures in the 37.0 GHz channel. The 
hydrometeors were also sufficient in size and quantity to scatter microwave radiation at the 
longer wavelengths of the 37.0 GHz channels, as indicated by the decrease in the mean value 
of the 37.0 V GHz - 19.35 V GHz brightness temperature difference (combination [c]). The 
non-uniform nature of the precipitation within the selected area can be seen by the very large 
increase in the standard deviation for combinations [c], [dl and [el. This can be visualized in 
Figure 9.3 where the 85.5 V GHz - 37.0 V GHz distribution histogram is plotted for the selected 
area, for the overpasses with and without precipitation. For vegetated surfaces, a threshold 
value of -1 K was determined for combination [dl as a precipitation flag. This value is 
approximately 2.5 standard deviations from the mean value over dense vegetation areas with 
no precipitation shown in Tables 9.3 and 9.4. The rule is: 



Dense Vegetation - Amazon Jungle 

T85V - T37V (K) 

Figure 9.3 Effect of heavy precipitation on the 85V - 37V brightness temperature 
difference over dense vegetation. 

9.1 A5.2 Rain Over Soil Rule 

The detection of precipitation over soil is similar to the detection of precipitation over 
vegetation. Scattering b y  hydrometeors in the atmosphere decreases the brightness temperatures 
in the 85.5 GHz channels more than in the other SSMII frequencies. However, the background 
microwave emission by soil is polarized and the relativebrightness temperature differences 
among frequencies are different. Several storms were identified using SSMII data over the 
United States test regions. The storms were checked against National Weather Service radar 
charts, when available, to confirm the locations of thunderstorm cells and occurrence of 
precipitation. An example is shown in Table 9.10 for a squall line occurring over Oklahoma 
and Texas on Day 228, 1987. Combination values for Day 227 are typical average signatures 
for pooled footprints containing mostly dense rangeland and agricultural vegetation and dry 
arable soil classifications (Tables 9.4 and 9.5). The thunderstorm activity on Day 228 resulted 



in considerable scattering in the 85.5 GHz channels (combinations [dl and [el) and some 
scattering in the 37.0 GHz channel (combination [c]). 

Threshold values for flagging precipitation with combinations [c], [dl and [el were 
determined based on the lower limits for these combinations after pooling the data shown in 
Table 9.5 (dry arable soil) and the study of numerous confirmed precipitation cells over the 
central plains of the U.S.. The rule is: 

Combination [g] is a snow flag, to differentiate the signature caused by hydrometeors, 
from scattering caused by snow which also depresses the brightness temperatures of the shorter 
wavelength (higher frequency) SSMII channels. 

TABLE 9.10 EFFECT OF A SQUALL LINE ON BRIGHTNESS TEMPERATURE 
COMBINATION VALUES OVER MOSTLY ARABLE SOIL FOOTPRINTS IN 
THE CENTRAL PLAINS OF THE UNITED STATES 

Central plains of United States. Approximate box size: 
NW comer: 37ON 102'W SE comer: 32ON 95'W 

Combination 

CD228 Desc. 
With Precipitation 
Mean SD 

CD227 Desc. 
No Precipitation 
Mean SD 

{19V+37Q - {19H+37H) [b] 6.28 2.05 5.45 1.43 



Classification of Snow Covered Surfaces 

Microwave emissions from snow covered surfaces depend on several factors. These 
include: (1) the underlying surface type, (2) the moisture content of the underlying soil and if 
the water is frozen or in liquid form, (3) the depth of the snowpack, (4) the density of the 
snowpack, (5) the shape and size of the snow crystals and, (6) the liquid water content of the 
snowpack. Thus, the classification of snow is complicated as the microwave signature from a 
snowpack with constant depth can vary with snow morphology, snow ripeness and cycles of 
melting and re-freezing under spring weather conditions. Therefore, the interpretation of 
microwave signatures from a snow covered surface at any point in time would benefit from the 
history of previous weather and snowpack conditions. 

The characterization of snow signatures and their relationships with parameters such as 
snow wetness, snow depth and water equivalent has been studied by many authors such as [5], 
[6], and [?'I. Other research concerning snow microwave properties has also been described by 

Specific research on snow classification has been done by Kunzi et al. [8] in the 
development of snow extent, snow depth and water equivalent algorithms for SSMR. Schanda 
et al. [9] proposed a snow classification scheme based on several years of observations which 
included classes such as winter snow, wet spring snow and dry, refrozen spring snow. 
McFarland et al. [lo] investigated snowpack properties using SMMR brightness temperatures 
and were able to detect dry snow accumulation, and snow melting and refreezing processes. 

9.1.3.6.1 Dry Snow 

The normal dry snow microwave signature is the depression of brightness temperatures 
in the 37.0 GHz channels with respect to the 19.35 GHz channels due to volume scattering. At 
37.0 GHz, scattering is the main component of the total extinction loss of the medium [4]. 

Channel combination data for footprints containing dry snow over the northern plains of 
the US. during a few days in February, 1988 are shown in Table 9.11. The ground truth snow 
depth values were obtained from the NOAA cooperative network of weather stations in the 
central plains states of the U.S. Average daily snow depth values and corresponding SSMII 
brightness temperature data were gridded to 0.25 degree latitudellongitude cells for analysis. 
The developed rule for dry snow can be written as: 



Conditions [c], [i] and [h], together differentiate snow from cold bare soil situations as 
well as large precipitating thunderstorm clouds. The threshold for combination [c] is 
approximately the lower limit for this brightness temperature difference over dry arable soil with 
no snow. When snow is present, brightness temperatures in the 19.35 GHz channels also 
decrease, partly due to scattering and partly due to the decreased physical temperature of the 
snow and underlying soil. 

Results in Table 9.11 also show the greater variability in brightness temperatures 
(reflected by the larger standard deviations) caused by the spatial distribution of snow at different 
depths. 

TABLE 9.11 SELECTED BRIGHTNESS TEMPERATURE COMBINATIONS OVER DRY 
SNOW IN THE CENTRAL PLAINS OF THE UNITED STATES 

Approximate box size: 
NW comer: 49'N 105OW SE comer: 45ON 10O0W 

Combination SNOW NO SNOW Calendar 
Mean SD Mean SD Date of 
(K) (K) (K) (K) Overpass 

- 
[19V+37V) - 09H+37H) [b] 12.02 2.33 10.09 1.41 51A 

9.1.3.6.2 Wet Snow and Refrozen Snow 

The classification of wet snow or melted snow containing water in liquid form as well 
as refrozen snowpacks requires the use of the dynamic database scheme, as their microwave 
signature could be confused with other surfaces. A small amount of liquid water (volumetric 
water content of 0.01) will increase the volume absorption coefficient of the medium to a value 
greater than the scattering coefficient, thus reducing the scattering albedo to a very small value 
[4]. For higher volumetric water contents, scattering is practically non-existent and the 



snowpack begins to behave like a blackbody radiator. Such conditions are normally encountered 
in the spring, when the snowpack undergoes successive cycles of thawing and refreezing. 
During the day, when temperatures are above the freezing point, the top layers of the snowpack 
will partially melt, increasing the volumetric water content of the snow. As a result, the 
microwave brightness temperatures at 37.0 H GHz will increase with respect to the TB at 19.35 
H GHz. This is shown in Figure 9.4 for a 10 day sequence of SSWI data over north-central 
Nebraska during February, 1988. The last snowfall over that region occurred on Day 50-51 
with 50 to 75 mm of new snow bring reported by the weather stations in the area. Average 
snow depths changed throughout the period from 254 mm on day 51, to 55 mm on day 59 
(Figure 9.5). Maximum and minimum air temperatures are also shown in Figure 9.4, 
corresponding to descending and ascending overpasses respectively. The first available SSWI 
data after the snowfall is for the ascending overpass on day 51. The Tn difference of 
approximately 20 K between the 19.35 H and 37.0 H GHz channels as well as the low 
brightness temperatures in both channels are an indication of dry snow and were classified as 
such with the dry snow rule. The signature for the ascending overpass on day 53 is similar to 
that of day 51 with slightly cooler temperatures. On both days, the minimum air temperature, 
which probably occurred a few hours prior to the overpass, was below the freezing point. 

The descending overpass on day 53, showed a marked increase in the 37.0 H GHz 
brightness temperature to within 1 K of the 19.35 H GHz channel as a result of a wet snow 
surface layer. Thawing at the snow surface occurred during the day due to warm air 
temperatures (the maximum air temperature was 7' C). Data from the ascending overpass on 
day 55 shows a drastic decrease in brightness temperatures in both horizontally polarized 
channels. The minimum temperature reached approximately -14 OC, sufficient to re-freeze any 
liquid water in the snowpack. The thawing and refreezing process increases the size and 
changes the shape of the ice crystals, which tend to become spherical as the snowpack ripens 
and undergoes several of these cycles. The increase in particle size will increase the scattering 
albedo and decrease the polarization dependence causing additional scattering at longer 
wavelengths and lowering the Tg's. 

Figure 9.6 shows brightness temperatures in the horizontal and vertical polarizations for 
the 19.35 and 37.0 GHz channels for the same period. Brightness temperatures for the 
ascending overpass on day 55 were lower than those of day 53 for both frequencies and 
polarizations while the polarization difference was smaller, indicating a refrozen snow surface 
layer. Subsequent overpasses beginning with the descending overpass on day 56 indicate a cycle 
of thawing during the day with re-freezing overnight. During this period, the variability in the 
19.35 H - 37.0 H GHz TB difference for the descending overpasses was probably due to 
different volumetric water content in the snowpack. In addition, the snow depth continuously 
decreased throughout the period (Figure 9.9,  with the snowpack depth on day 59 being less than 
half its depth on day 53. 

These variable microwave snow signatures are difficult to accurately interpret with stand 
alone independent rules. A dynamic database scheme should be implemented, if accuracy is 
desired, in order to differentiate dry snow from re-frozen snow and wet snow signatures as the 
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Figure 9.4 Variation in horizontally polarized brightness temperatures in the 19.35 GHz 
and 37.0 GHz channels throughout a ten day period in February, 1988. 
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Figure 9.5 Snow depth changes over a ten day period in February 1988, for a region in 
central Nebraska. 
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Figure 9.6 Variation in both polarizations of the 19.35 GHz and 37.0 GHz channels 
throughout a ten day period in February 1988. 

snow depth retrieval algorithm should only apply to dry snow conditions. A dynamic database 
scheme would check for the accumulation of snow during the winter period as well as the onset 
of the thawing and re-freezing processes, and allow for the consideration of the previous history 
of the snowpack in the classification logic. 

The following additional snow classification rules attempt to classify some of the 
changing snowpack conditions without the use of a dynamic database. It must be noted that due 
to the variability in snow microwave signatures, the rules are not perfectly accurate. Footprints 
which contain a mixture of snow with different degrees of liquid water content, wet soil and 
vegetation result in complex microwave signatures that cannot be interpreted by stand alone 
rules, requiring the knowledge of previous history for accurate classifications. 

Based on the analysis of several time series of SSMII data along with snow cover ground 
truth data as shown in Figures 9.4, 9.5 and 9.6, the wet snow rule can be written as: 



where condition [b] ensures that a high polarization exists due to the presence of liquid water, 
condition [c] sets the range of scattering in the 37V caused by snow or a snowisoil mixture. It 
differentiates the wet snow pack from cold semi-arid surfaces. Condition [dl is the flag used 
to differentiate between dry and moist soil, condition [j] identifies the liquid water in the 
snowpack and condition [h] allows a range of brightness temperatures within which wet 
snowpacks usually occur, based on observations of SSMA data. The rule is complex as a result 
of the complexity of the surface being classified. Cold semi-arid surfaces with moisture in the 
top layer, could be confused with wet snowpacks. Also, frozen ground signatures can add to 
the misclassifications. 

Re-frozen snowpacks have a distinct signature from dry and wet snow. Brightness 
temperatures decrease with increasing frequency in both polarization channels, and additional 
scattering at 37.0 GHz and 85.5 GHz results in very low brightness temperatures. Thus: 

9.1.3.6.3 Snow Over Lake Ice and Composite Snow Over Soil and Lake Ice 

Some additional interesting microwave signatures involving snow include snow over ice 
in freshwater lakes during the winter and footprints which contain a mixture of snow over ice 
and surrounding soil surfaces. 

Snow over lake ice can be identified by: 

and a snow-soil-lake ice mixture is detected by: 



The above rules address anomalous cases with complex signatures and were based on 
observations of microwave brightness temperatures over lakes in Canada during winter. They 
need to be further tested with SSM/I data collected over lakes in other parts of the world. 

9.1.3.6.4 Snow and Dense Vegetation 

This is a fairly common naturally occurring surface as many mountain ranges in the 
temperate zones have evergreen forests and snow cover during the winter. The microwave 
signature is characterized by a small polarization difference due to the dense vegetation but with 
lower brightness temperatures as frequency increases due to surface scattering. The rule 
attempts to classify these cases, thus decreasing the number of "rain over vegetation" 
misclassifications which would result otherwise. The rule is: 

In the winter, under dry snow cover conditions, brightness temperatures in the 19.35 V 
are usually well below 268 K. However in the spring, the snowpack at higher elevations under 
trees is usually the last to melt and contributes to surface scattering in the footprint scene. 
Physical surface temperatures are much higher and the overall effect is a higher brightness 
temperature in the 19.35 V GHz channel. Snow cover and vegetation can still occur with 19.35 
V brightness temperatures greater than 268 K, as it is also theoretically possible for heavy 
rainfall to occur over a cool vegetated surface, resulting in similar microwave signatures. Most 
of the time it is possible to differentiate between both surfaces as scattering in the 85.5 GHz 
channels is greater for atmospheric phenomena such as thunderstorm clouds while for snow 
covered surfaces, the scattering occurs in both the 37.0 GHz and 85.5 GHz channels. 

9.1.3.6.5 Snow Edge 

No particular classification rule was developed to detect snow edge due to lack of precise 
ground truth data. However under the present scheme, footprints would be classified as dry or 
wet snow, refrozen snow, moist soil or dry soil. Thus, the position of the snow edge would be 
determined geographically by the classification of congruent footprints as one of these surface 
types. However, as mentioned above, microwave signatures from footprints that contain a 
mixture of snow at different liquid water contents, along with wet soil and/or vegetation are 



complex and difficult to classify with stand alone rules. In many instances, these situations 
occur at the edge of the snowpack and will result in an indeterminate classification (a default 
classification when no other classification rule applies). The use of additional satellite instrument 
datasets, such as visible data from the OLS or AVHRR under clear conditions would be useful 
in identifying the exact position of the snowpack edge and serve as "ground truth" for the SSWI 
data. 

9.1.4 ~ummary and Conclusions 

A list of the developed classification rules is shown in Table 9.12. All temperature 
threshold values are in degrees Kelvin, based on SDR brightness temperatures. Unless otherwise 
stated, all conditions within a rule must be true for the rule to apply. 

It must be noted that no surface type classification scheme based solely on microwave 
brightness temperatures will be perfectly accurate. Over land, the large SSMII footprints 
integrate emissions from highly heterogeneous surfaces with different microwave properties 
(soils, vegetation, water). Thus, the rules will classify a given footprint according to the surface 
type which is most prevalent within it. However misclassifications can still occur, as composite 
microwave signatures from a mixture of surfaces with different microwave emission properties 
can be misleading. Misclassifications could possibly occur between: 

(1) heavy rainfall over cold, wet soil and snow covered soil 

(2) snow and dense vegetation and heavy rain over cool dense vegetation 

(3) wet snow with cold wet soil surface 

(4) cold wet semi-arid surface and ripe snow covered soil surface. 

(5) snow edge or snow-soil mixtures classified as indeterminate 

The rules presented in Table 9.12 were designed to be used in combination with the 
developed overland parameter retrieval algorithms defined in sections 9.2,9.3 and 9.4. Due to 
the complex mixture of surfaces which can naturally occur, there will be instances of 
indeterminate classifications. It is expected that these will be kept to a minimum, not affecting 
the retrieval of the parameters. Additional rules to deal with these anomalous cases could be 
developed in the future if necessary. 

A listing of the parameter retrieval algorithms which apply to each surface type 
classification rule are shown in Table 9.13. 



TABLE 9.12 SUMMARY OF SURFACE TYPE CLASSIFICATION RULES USING THE 
SEVEN CHANNELS OF THE SSMII 

BRIGHTNESS TEMPERATURE COMBINATION THRESHOLD VALUES 
LAND SURF. [a] [bl [c] [dl [el [gl pi] 
TYPE (K) 

UI 
(K) (K) (K) (K) (K) (K) (K) 

Flooded Cond. > 4 

Dense Veg. 

Dense Agric.1 
Range Veg. 

Dry Arable 
Soil 

Moist Soil 

Semi-Arid 
Surface 

Desert 

Precipitation 
Over Veg. 

Precipitation 
Over Soil 

Comp.Veg. 
and Water 

Comp. Soil & .̂ 4 
WaterIWet Soil 

Dry Snow' - < 4 

Wet Snow - < 4 

Refrozen Snow2 < 4 

[a] 22V - 19V [b] (19V+37V)12 - (19H+37H)12 [c] 37V - 19V 
[dl 85V - 37V [el 85H - 37H [fl 37V - 37H 
[gl 19V [h] 37V [j] 37H - 19H 
Additional conditions: ' 19V - 19H > 5 19V > 37V > 85V , 19H > 37H > 85H 



TABLE 9.13 CLASSIFICATION RULES AND APPLICABLE ALGORITHMS 

Surface Type Algorithm 

Flooded conditions (7) No EDR 

Dense vegetation 

Dense agriculture crops 
and range vegetation 

Dry arable soil 

Moist soil 

Semi-arid surface 

Desert 

Precipitation over vegetation 

(1) Surface temperature over vegetation (STV) 

(3) Surface temperature over land (STL) 

(9) Surface temperature over desert (STD) 

(18) Surface temperature over moist soil 
(STML), Surface moisture (SM) 

(15) STD 

(10) STD 

(4) Precipitation over land (RL) 

Precipitation over soil (8) RL 

Composite vegetation and water (2) STV 

Composite soil and waterlwet soil (6) STML, SM 

Dry snow 

Wet Snow 

Re-frozen snow 

Indeterminate Classification 

(14) Snow depth (SD) 

(19) No EDR 

(13) No EDR 

(0) No EDR 

STV, STL, STD, STML, SM, RL, and SD denote retrieval algorithm codes. Numbers in 
parenthesis are the proposed EDR surface type codes. 



9.1.5 Alternative Rules 

In mid-March 1988, after the SSMII was turned back on, an increase in the noise level 
of the 85.5 GHz vertical polarization channel was observed. This channel continued to 
deteriorate until the data was rendered useless by the middle of that year. Later, similar 
problems with the 85.5 GHz horizontal polarization channel occurred. 

The failure of both channels posed a problem for the use of some retrieval algorithms, 
including the land surface type classification scheme which depends on these brightness 
temperatures for the accurate classification of water in the footprint scenes as well as 
precipitation events over land. To address the unavailability of data from these channels, two 
alternative schemes were developed: (1) classification rules to be used when only the 85.5 V 
GHz is not available and (2) rules to be used when both 85.5 GHz channels are unusable. 

9.1.5.1. Rules for the Loss of the 85.5 V GHz Channel 

The methodology used in the development of these rules was the same as described in 
section 9.1.2. The difference being that the 85.5 V GHz was not included in the analysis. 
Channel brightness temperature differences and combinations in the original rules which were 
based on the 85.5 V GHz channel were substituted, for most part, by combinations using the 
85.5 H GHz channel. An analysis of the changes to the original rules is conducted in the 
following Sections. 

9.1.5.1.1 Dense Vegetation, Dense Agricultural and Rangeland Vegetation, Composite 
Dense Vegetation and Water, Rain Over Vegetation 

In the original scheme, the 85.5 V - 37.0 V channel combination is used as an indicator 
of rainfall for the above listed rules. The modified rules are based on the 85.5 H - 37.0 H 
combination instead. Microwave radiation in the 85.5 H GHz channel will be scattered by 
hydrometeors in the atmosphere in a similar manner as the. 85.5 V Ghz channel, due to its small 
wavelength. Based on the analysis of numerous storms and, considering a lower limit for this 
combination of approximately three standard deviations from the mean in the case of no 
precipitation (Table 9.3), a threshold value of -0.8 K was determined for the flagging of rainfall 
over vegetation. Therefore, if the combination 85.5 H - 37.0 H < -0.8, rainfall is present 
within the footprint. Table 9.14 summarizes the new rules. 

9.1.5.1.2 Dry Arable Soil, Semi-Arid Conditions, Desert, Composite Soil and Water or Wet 
Soil, Moist Soil 

The 85.5 V - 37.0 V combination was used in these rules both as an indicator of rainfall 
and for the detection of surface moisture along with the 85.5 H - 37.0 H . The latter 
combination can be used on its own for both purposes with different brightness temperature 
threshold values. The classification results will be less accurate (more misclassifications) but 
overall, the rules perform satisfactorily. 



To differentiate between dry arable soil and moist soil, the 85.5 H - 37.0 H combination 
must have a value less than 3 K, but greater than -4.1 K, the latter being the threshold value, 
below which rain is present within the footprint scene. For moist soil, the 85.5 H - 37.0 H is 
greater than 3 K but less than 4.3 K, while for wet soil or composite soil and water 85.5 H - 
37.0 H > 4.3 K. A summary of the rules is shown in Table 9.14. 

9.1.5.1.3 Flooded Conditions, Snow Rules 

These rules are unaffected by the loss of the 85.5 V GHz channel. 

9.1.5.2 Rules for the Loss of Both 85.5 GHz Channels 

With the unavailability of both 85.5 GHz channels, the classification of surface moisture 
is practically impossible with any acceptable degree of accuracy. To detect moisture on the 
surface due to precipitation it will be necessary to maintain a running average of the 19.35 
Hl37.0 V normalized brightness temperature and observe significant decreases in the value of 
this parameter due to moisture, as described in Section 9.3. Composite water and soil or 
vegetation scenes are harder to detect with just the lower frequency channels. Precipitation can 
be detected with the 37.0 V - 19.35 V channel combination, however, due to the lesser 
sensitivity to small hydrometeors of the longer wavelengths at 37.0 GHz, the classification of 
rainfall is less accurate. Thunderstorm events with large water andlor ice droplets will be 
classified, but smaller events with finer precipitation might not be detected without the 85.5 GHz 
channels. 

The resulting rules to be used without the 85.5 V GHz channel are shown in Table 9.14 
and the rules to be used if both of the 85.5 GHz channels are missing are shown in Table 9.15. 
The appropriate retrieval algorithms to be used when all channels are present or when the 85.5 
V GHz channel is missing are given in Table 9.13. When both 85.5 GHz channels are missing 
the retrieval algorithms to be used are given in Table 9.16. The dry arable soil rule will be 
called arable soil as it will include surfaces that are moist or that contain water bodies. Thus, 
algorithm parameters such as land surface temperature retrieved over such areas could be less 
accurate. 

Snow detection is limited to dry snow as the 85.5 GHz channels are required to 
categorize other snow surfaces such as wet snow or re-frozen snow. 



TABLE 9.14 LAND SURFACE TYPE CLASSIFICATION RULES TO BE USED WHEN 
85.5 V GHz CHANNEL IS MISSING 

B s VALU 
LAND SURF. [a] 
TYPE 

PI [cl [dl [el 
(K) (K) (K) (K) 

kl [hl 
(K) (K) (K) 

ti1 
(K) 

Flooded Cond. > 4 

Dense Veg. 

Dense Agric.1 
Range Veg. 

Dry Arable 
soil 

Moist Soil 

Semi-Arid 
Surface 

Desert 

Precipitation 
Over Veg. 

Precipitation 
Over Soil 

Comp. Veg. 
and Water 

Comp. Soil & .̂ 4 
WaterIWet Soil 

Dry Snow1 - < 4 

Wet Snow - < 4 

Refrozen Snow2 <. 4 

[a] 22V - 19V [b] (19V+37V)l2 - (19H+37H)l2 [c] 37V - 19V 
[dl 85V - 37V [el 85H - 37H 
[gl 19v [hl 37V 
Additional conditions: ' 19V - 19H > = 5 19H > 7H > 85H 



TABLE 9.15 LAND SURFACE CLASSIFICATION RULES TO BE USED WHEN BOTH 
85.5 GHz CHANNELS ARE MISSING 

BRIGHTNESS TEMPERATURE COMBINATION THRESHOLD VALUES 
LAND SURF. [a] 
TYPE 

[bl [cl [dl [el kl pi1 
(K) (K) 6) (K) (K) (K) (K) (K) 

m 

Dense Veg. 

Dense Agric.1 <. 4 
Range Veg. 

Arable Soil' 

Semi- Arid 
Surface 

Desert 

Precipitation .$. 4 
Over Veg. 

Precipitation ^_ 4 
Over Soil 

Dry Snow2 

[a] 22V - 19V [M (19V+37V)l2 - (19H+37H)/2 [c] 37V - 19V 
[dl 85V - 37V [el 85H - 37H [f] 37V - 37H 

19V [h] 37V [j] 37H - 19H 
^Arable soil type includes the types dry arable soil, moist soil, and composite soil and 

~ - 

waterlwet soil. 
'Additional conditions: 19V - 19H > = 5 



TABLE 9.16 CLASSIFICATION RULES AND APPLICABLE ALGORITHMS TO BE USED 
WHEN THE 85.5 GHz CHANNELS ARE MISSING 

Surface Type Algorithm 

Flooded conditions 

Dense vegetation 

Dense agriculture crops 
and range vegetation 

Arable soil' 

Semi-arid surface 

Desert 

Precipitation over vegetation 

Precipitation over soil 

Dry snow 

Indeterminate Classification 

(7) No EDR 

(1) Surface temperature over vegetation (STV) 

(3) Surface temperature over land (STL) 

(9) Surface temperature all types (STA) 
Surface moisture (SM) 

(15) Surface temperature over desert (STD) 

(10) STD 

(4) Precipitation over land (RL) 

(8) RL 

(14) Snow depth (SD) 

(0) No EDR 

STV, STL, STA, SM, STD, RL, and SD denote retrieval algorithm codes. Numbers in 
parenthesis are the proposed EDR surface type codes. 
'Arable soil type includes the types dry arable soil, moist soil, and composite soil and 

waterlwet soil. The All Types land surface temperature algorithm is to be used. 
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9.2 LAND SURFACE TEMPERATURE ALGORITHMS 

9.2.1 Algorithm Develooment Rationale 

The retrieval of surface temperature over land has been an omission in the development 
of applications of passive microwave radiometry. Microwave radiometers on satellites have been 
designed to retrieve the atmospheric temperature profile and sea surface temperature. The 
radiometers for atmospheric profiles have several channels on the flank of an absorption band, 
such as the 50 to 60 GHz oxygen absorption band. In order to retrieve an atmospheric 
temperature profile, the temperature of the lowest atmospheric layer is needed. Sources of this 
temperature can be either surface temperature reports or a channel in a window adjacent to the 
absorption peak. While considerable research has been conducted in atmospheric temperature 
microwave sounders [I], the specification of the surface temperature field over land has not been 
a product of this research. A major complicating factor has been the variability of the land 
surface in the field of view of the radiometers. Water in any form in the atmosphere, on the 
land surface, or in soil (without significant vegetative cover) changes the emission, absorption, 
and scattering of the emitted radiation. These problems are generally viewed in terms of 
standardizing or normalizing the background temperature so that the water, in its various forms, 
may be quantified. 

The potential exists for retrieval of land surface temperatures without a priori knowledge 
of the emissivity, absorption, or scattering. The temperatures of densely vegetated or dry land 
surfaces, each with a high emissivity, should be easily retrievable from vertically or horizontally 
polarized brightness temperatures. Lambert and McFarland [2] found excellent correlations 
between the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) in the 18 and 
37 GHz vertical and horizontal channels, and air temperature for dry range and prairie areas in 
the northern Great Plains. The observed air temperatures were measured at screen height, 1.2 
m, and reported as daily maximums and minimums in the NOAA climatological data. 
Incorporation of the 22 GHz vertical channel should aid in the correction for atmospheric water 
vapor absorption of the emitted radiation. The horizontally polarized brightness temperature at 
either 19 or 37 GHz should similarly correct for effects of surface or soil water on the 
emissivity. Land surface temperature retrieval from passive microwave may not be possible or 
meaningful in the presence of snow, ice, or water. 

The original Hughes Aircraft Company (HAC) algorithm for the retrieval of land surface 
temperature had three forms. Temperature over cloudy land (TLC) was not investigated due to 
an inability to discriminate extensive cloud cover in the land surface classification module. 
Previous experience [3] indicates that temperature over snow (STS) and cloudy snow (TSC) 
would be extremely difficult, at best, to retrieve. The passive microwave radiation from a snow 
pack is a combination of attenuated radiation emitted from the underlying soil, the reflected sky 
radiation from the snow surface, and the radiation emitted from the snow. This radiation is 
strongly influenced by the crystalline structure of the snow, which changes slowly through hoar 
crystal development and rapidly through freezing and thawing cycles. Although snow is 



regarded as a blackbody radiator, it does not function as a black body at the incidence angles 
of the SSMII. 

For surfaces with a high emissivity (dense vegetation, frozen soil, and glacial), the 
original HAC algorithm was: 

ST = Cl * 19V, 
where: 

ST = surface temperature (K) 
C, = 1.09 for vegetation 

1.07 for frozen and glacial, and 
19V = 19.35 GHz vertically polarized brightness temperature. 

These values for Cl are the inverse of the modelled emissivities for these surfaces. The 
influences of the atmosphere on the emitted radiation were not considered in this algorithm. 
For surface temperature over arable land (agricultural and range land), desert, and snow, the 
original algorithm was: 

Here Co = -36.4 and CM = the coefficients for the channels, as indicated. The physical 
explanation for this algorithm can be discerned by rewriting the equation as: 

In this form, the 37V channel is the primary channel to retrieve the land surface temperature. 
Three corrections were made to this estimate. The brightness temperature difference between 
37V and 22V is a measure of the atmospheric water vapor which attenuates the emitted 
radiation. As the difference increases, the amount of the correction must also increase. The 
polarization difference between the 37 and 19 GHz brightness temperatures is a function of the 
water present in the land surface scene. As before, the greater the channel-polarization 
difference, the more the correction is required. The 85H correction is small, between 15 and 
20 K, and is a function of the attenuation by atmospheric water. The actual correction for 
atmospheric water is less, but in this form of the equation, the constant is included in the overall 
regression constant (C,,). Rearrangement of these terms produces: 

Here A, = the inverse of the emissivity of the dry scene in the 37V channel, A2 = 0.127, the 
value of C,, A, = 0.459, the value of C3, and A4 = 0.0636, the value of C,. If the inverse of 
the emissivity is set at 1.024, the sum of the coefficients is equal to C,, which is 1.610. If the 
contribution of the 85H channel were neglected, the inverse of the emissivity should be increased 
to 1.07. 



The purpose of this investigation was to validate the basic rationale of the algorithms 
based on multiple linear regression, to select the optimal channels for various categories of land 
surface types, and to calibrate the coefficients of the regression. 

9.2.2 Methodoloq 

The management of SSMII and climatological data has been discussed in Section 9.0.1. 
Files of SSMII brightness temperatures and air temperatures (24 hour minimum, maximum and 
temperature at time of observation) were created for the Western Desert and Central Plains test 
areas. Air temperatures at screen height (1.2 m) were used for the calibration and validation 
of the coefficients, as opposed to estimates of the temperature of the emitting layer. Air 
temperature at screen height is the standard for incorporation of temperature into numerical 
meteorological and agricultural meteorological models. Under cloudy or high humidity 
conditions, the surface and screen temperatures should be very close. For clear, dry conditions 
the deviations between the surface and screen temperatures will be the greatest, especially if the 
radiating surface is characterized by a high emissivity and a low density. These conditions 
promote strong radiational inversions in the early morning hours and superadiibatic lapse rates 
near the surface in the early afternoon hours. A coefficient of determination of 0.94 for 974 
pairs of screen temperatures and the radiometric temperature of the earth surface from thermal 
infrared or microwave sounder measurements from NOAA 6 has been reported [4] with a 
standard deviation usually less than 2.0 K during the summer months, but in the 3 to 4 K range 
in the winter months. 

Temperatures from the climatological network were used, as opposed to hourly 
temperatures from first order weather stations, in order to achieve the required density of surface 
temperature observations. The operation of climatological stations requires volunteer observers 
to record temperatures and other climatological elements each day. The temperatures are the 
maximum and minimum during the past 24 hours and the temperature at the time of observation. 
The time of observation is either during the early morning or the late afternoon, normally at the 
convenience of the observer. Federal stations (National.Weather Service and Flight Service) 
record the climatological elements at midnight, local time. Consequently, the temperatures 
recorded for a given day may have occurred the previous day. The actual time of the satellite 
overpass was about 0615 local standard time, which corresponds fairly closely with the early 
morning observing time for the temperatures. The late afternoon observing times are generally 
in the 1700 to 1900 time range, ordinarily several hours after the time of the occurrence of the 
maximum temperatures. An attempt was made using curve fitting techniques to estimate the 
screen air temperature at the time of the satellite overpass (near 1800 local standard time). A 
combination of sine and exponential terms incorporating the times of sunrise, sunset, and normal 
occurrence of the air maxima and minima were used to determine the 1800 temperature. A 
large variance was noted when the estimate was compared with the temperature at an observation 
time of 1800. A decision was made to confine the data set for algorithm development to the 
ascending, or early morning, overpass. 



The means and standard deviations of the differences between the reported minimum 
temperature and the temperature at time of observation was calculated for about 600 
climatological stations in the Central Plains for days 231, 234, 235, and 240, 1987. The 
comparisons are presented in Table 9.17. For climatological stations with 0500 and 0600 
observing times, the reported 24 hour minimum temperature did not agree with the temperature 
at observation time. This is probably due to an occurrence of the minimum temperature on the 
previous morning. For this reason, stations with 0500 and 0600 reporting times were excluded 
from the ground truth data set. For stations with 0700 and 0800 reporting times, the average 
differences were generally in the 2 to 4 C range, with standard deviations of 2.6 to 3.4 C. In 
general, the minimum temperatures that constituted the ground truth were about 2 C less than 
the air temperatures at the satellite overpass time. The ground truth temperatures ranged from 
1.1 to 26.7 C during the test period. Additional information on the variance within the ground 
truth is in Miller [5]. 

TABLE 9.17 COMPARISON OF REPORTED MINIMUM TEMPERATURES WITH 
TEMPERATURES AT TIME OF OBSERVATION FOR CENTRAL PLAINS 
TEST AREA, DAYS 231, 234, 235, AND 240 

Time of 
pbservation 

Means (C) of Differences, Temperature at Time of 
Observation and 24 Hou . . r Min~mum Te- 

Calendar Day 
23 1 - 224 235 

Standard Deviations (C) of Differences Temperature at Time of 
Observation and 24 Hour Minimum Temperature 

Time of 
observation 

Calendar Day 
221 234 235 240 



A multiple linear regression analysis was performed for each surface type identified in 
the land classification module (EXTLND). Initially, all seven channels were used in the 
regression. The best four channels were identified, based on the coefficient of determination 
(R2) and the root mean square error (RMSE). Similar categories of surface type were 
aggregated, primarily to prevent gradients in the temperature field across surface classifications 
[6]. Pixels classified as rain, flooded, and snow were excluded from the regression analyses. 
No stratification was made for cloudiness, due to an inability to classify different cloud types 
and amounts in the land classification module. The algorithms that were identified were then 
tested against independent data for both the Central Plains and the Western Desert test areas. 
The surface temperature files from the Climatological Data contained temperatures from single 
stations. 

9.2.2.1 Multiple Linear Regression With Brightness Temperatures 

Four major assumptions are inherent in multiple linear regression analysis. The basic 
assumption is that the regression model is linear. The other assumptions are that the values of 
the dependent variable (the retrieved variables, or EDRs, in the SSM/I analyses) are independent 
of each other and are normally distributed and that the variance of the independent variable is 
the same for all values of the independent variables. Violation of any of these four assumptions 
leads to problems with the analysis [7]. 

In the land surface temperature investigations, the basic form of the D-matrix algorithm 
was linear. The validity of this assumption was examined by plotting the predicted values 
against the observed values of land surface temperature and curvilinearity was not apparent. The 
relationships between the surface temperature and the brightness temperatures were also expected 
to be linear from a theoretical basis, primarily for single channel regression models. The data 
were autocorrelated both spatially and temporally within a specific time frame and a test area 
and the regression equations were tested against independent data for other locations and 
seasons, so the implications of autocorrelation are not expected to be significant. 

Multicollinearity is a problem when two or more of the independent variables are highly 
correlated with each other. In this event, the regression model will not be able to separate out 
the effect of each brightness temperature on the surface temperature. In the presence of 
pronounced multicollinearity, the estimates of the coefficients will have large standard errors and 
will tend to be unreliable. Multicollinearity is present when a high coefficient of determination 
is accompanied by statistically insignificant estimates of the regression coefficients [7]. This 
degree of multicollinearity in the D-matrix approach is evident from the correlation matrix of 
SSM/I brightness temperatures for the test area and period as shown in Table 9.18. Every 
channel was highly correlated with every other channel. The highest correlation coefficient was 
0.99 between 19V and 37V, the channels least influenced by atmosphere (after rain and standing 
water pixels were removed from the analysis). The lowest channel to channel correlation was 
0.84 between 85V and both 19H and 37H, the channels least sensitive and most sensitive to 
surface moisture, respectively. The 85V is also the most sensitive to clouds. The correlation 
between the horizonal and vertical components at a given frequency, or the within channel 



correlation, was very high for the 19, 37, and 85 GHz channels. In data not presented, the 
within channel correlation in vegetated terrain was highest for the 85 GHz channels. 

TABLE 9.18 CORRELATION MATRIX OF SSM/I BRIGHTNESS TEMPERATURES FOR 
LAND SURFACE TYPES USED IN THE LAND SURFACE TEMPERATURE 
RETRIEVAL 

SSM/I CHANNEL 

22YmmaYm 
0.98 0.99 0.95 0.91 0.93 
0.93 0.94 0.98 0.84 0.90 
1.00 0.98 0.93 0.95 0.96 

1.00 0.96 0.93 0.94 
1.00 0.84 0.91 

1.00 0.97 
1.00 

A recommended procedure when multicollinearity is present is to drop the correlated 
variables from the equation, depending on the test of significance of the regression coefficient 
and the judgement of the researcher [7]. If a highly correlated variable is dropped from the 
regression equation, the coefficient of determination will not change. This was apparent in the 
multiple linear regression analyses, as will be shown in the discussion. 

Another recommended approach to remove the effects of multicollinearity is to change 
the form of the independent variables. Normalization or differencing techniques may be 
employed. A principal component analysis was performed to account for the effects of 
multicollinearity of the SSMII brightness temperatures. Principal components is a multivariate 
analysis technique used to describe relationships between independent variables. A set of linear 
transformations is used to create a new set of independent variables that are jointly uncorrelated 
[8]. The first principal component has the largest variance of any linear function of the original 
brightness temperatures. The second component has the second largest variance, and so forth. 

Principal component (or factor) analysis was used to determine the most significant 
physical factors that relate the SSMII brightness temperatures to the land surface temperature. 
The principal components were determined for each land surface category of the aggregated set 
and used as independent variables in a linear regression analysis. The importance of each 
coefficient was determined based on the value of the probability level (p) and the t statistic. The 



p value is a two-tailed significance probability that the coefficient (and correlation) is zero. A 
low value of p indicates a high probability that the correlation is significant. 

Ideally, the variance of the independent variable is not a function of the values of the 
independent variables - a condition known as homoscedasicity. If the variances are not equal, 
then heteroscedasticity will be a problem. This condition was not rigorously tested in the SSMII 
data sets, but is not believed to be a problem. A visual examination of the scatter plots of 
predicted versus observed land surface temperatures did not reveal any pronounced change in 
variance distribution as a function of the value of the observed land surface temperature. A 
simple mean and standard deviation analysis of the SSMII brightness temperatures in the analysis 
also did not indicate a problem with heteroscedasticity. Because the principal components are 
standardized and uncomlated, the coefficient estimates have standard errors, thus avoiding 
heteroscedasticity. The standard deviations of the brightness temperatures were of the same 
order of magnitude as the land surface temperatures, as shown in Table 9.19. The standard 
deviations were slightly higher in the horizontal channels, as expected from influences of surface 
moisture. The standard deviations of the SSMII brightness temperatures were also higher in the 
lower frequencies, as expected from the decreased influence of scattering at the lower 
frequencies. 

In the linear regression analysis, the C, statistic was used to determine the optimum 
multiple linear regression models for each surface type aggregate. The Cp is a measure of the 
total squared error for a model with n independent variables [8]. The Cp provides a measure 
of the error variance plus the bias introduced by failing to include significant variables in a 
model. The smallest value of the Cp statistic indicates the optimum model, but the subsets that 
show a wide divergence between the Cp values are indicative of useful subset sizes. The Cp 
values are in Miller [5].  

TABLE 9.19 MEAN AND STANDARD DEVIATION OF THE SSMII BRIGHTNESS 
TEMPERATURES FOR LAND SURFACE TYPES USED IN THE LAND 
SURFACE TEMPERATURE RETRIEVAL 

19V 
19H 
22V 
37V 
37H 
85V 
85H 
TEMP 



9.2.3 Results and Discussion 

Two sets of results will be presented; with and without the 85 GHz channels as a 
consequence of the degradation of the 85 GHz channels on the SSMII on DMSP F-8. The 
primary data set used for the analysis was from days 231, 234, 235, and 240 in August, 1987 
when the 85 GHz channels were not as yet degraded. Consequently, two sets of algorithms are 
developed. In the event that the loss of the 85 GHz channels degrades the capability to 
discriminate between land surface types, four categories are used: agricultural/range, dry soil, 
moist soil, dense vegetation, and all categories. The number of data points in each category for 
the Western Desert and Central Plains test areas is shown in Table 9.20. 

TABLE9.20 NUMBER OF DATA POINTS, BY CATEGORY, FOR PRINCIPAL 
COMPONENT AND MULTIPLE LINEAR REGRESSION ANALYSIS OF 
LAND SURFACE TEMPERATURE 

Surface T- Western Desert &&d Plains 3htd 

Dense agric./range 317 
All moist soils 955 
All dry soils 399 
Dense vegetation 133 
All types 1804 

Algorithms Without the 85 GHz Channels 

The results of the regression analysis of principal components for all land surface types 
in the Western Desert and Central Plains test areas are contained in Table 9.21. The 
independent variable was land surface temperature, as inferred by screen temperature, at time 
of overpass. The five eigenvalues which sum to 5.0 correspond to the five SSMII channels used 
in this investigation. A set of eigenvalues of relatively small and equal magnitude indicates that 
the multicollinearity is small, which is not the case with the SSMII brightness temperatures. The 
cumulative sum of the variance explained is 1.00. The first factor explains nearly 90 percent 
of the variance and the second factor explains eight percent. Thep level is very low for all five 
factors, as expected due to the intercorrelations. 



TABLE 9.21 PRINCIPAL COMPONENTS ANALYSIS FOR ALL LAND SURFACE TYPES 
FOR 19,22, AND 37 GHz CHANNELS, WESTERN DESERT AND CENTRAL 
PLAINS TEST AREAS 

Factor 

Eigenvalue 4.47 0.40 0.0878 0.0319 0.0115 
Cumulative 0.894 0.974 0.991 0.998 1 .000 
t statistic 46.24 -48.54 -8.05 15.04 -6.07 
p level 0.0001 0.0001 0.0001 0.0001 0.0001 

The significance or factorloading of each channel within each factor is shown in Table 
9.22. These correlations within a factor help with the physical explanation of the factor. Factor 
1 represents radiative emission. Although all correlations are high (over 0.92), the 19V and 37V 
GHz channels have the highest correlations. This is expected because vertically polarized 
radiation is affected less by surface moisture and reflections from bare, dry soil than horizontally 
polarized radiation. 

TABLE 9.22 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR 
ALL LAND SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, 
WESTERN DESERT AND CENTRAL PLAINS TEST AREAS 

Channel Factor 

Factor 2 is a polarization difference term, as indicated by the opposite signs of the 
correlations in the vertical and horizontal polarization channels. Two sources of polarization 
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difference in radiation emitted from land surfaces are surface moisture and reflection from 
smooth, dry surfaces such as deserts. As surface moisture increases, the emissivity decreases 
due to a higher dielectric constant. This effect is frequency dependent, with a greater effect at 
the low frequencies. The horizontally polarized brightness temperatures will decrease more than 
the vertically polarized brightness temperatures. The net effect of increased soil moisture is to 
decrease the brightness temperatures and to increase the polarization differences. This is 
consistent with the principal component analysis with land surface temperature as the dependent 
variable. 

A second source of polarization difference is sky and cloud reflection from bare, dry 
soils. Deserts are identified by the large polarization differences, which reached 30 C at 19 
GHz for deserts in Africa and North America. As the land surface becomes rougher and more 
vegetated, the polarization difference decreases due to decreased reflection. A principal 
components analysis for the Central Plains data set, without the bare dry soil influence, is 
presented in Tables 9.23 and 9.24. The value of the eigenvalue decreased from 0.40 to 0.11 
when the Western Desert was excluded from the data set. The correlations of factor 2 with all 
channels also are lower; attributed to the decreased influence of strong polarization differences 
from bare, dry soils. 

Factor three is characterized by positive, but low, correlations with the 19 and 22 GHz 
channels and negative correlations for the 37 GHz channels. Factors 4 and 5 are characterized 
by very low correlations with all channels. 

The effects of atmospheric water vapor and cloud and precipitation particles do not 
appear to have a major influence on land surface temperature retrieval from the SSM/I 
brightness temperatures. The percent variance explained by factors 3,4, and 5 is very low when 
compared to the variance explained by the emission and polarization difference factors. This 
indicates that regression coefficients to correct for these influences for land surface temperature 
retrieval may not be statistically significant. 

TABLE 9.23 PRINCIPAL COMPONENTS ANALYSIS FOR ALL LAND SURFACE TYPES 
FOR 19,22, AND 37 GHz CHANNELS, CENTRAL PLAINS TEST AREA 

- 
Factor 

Eigenvalue 4.83 
Cumulative 0.967 
t statistic 51.96 
p level 0.0001 



TABLE 9.24 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR 
ALL LAND SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, 
CENTRAL PLAINS TEST AREA 

Channel Factor 

The principal component analysis for the agricultural/range land surface type is shown 
in Tables 9.25 and 9.26. Emission, the first factor, accounts for 98.7 percent of the variance 
and all channels are very highly correlated with this factor (over 0.98). Because the 
agricultural/range land surface type was characterized by low polarization difference, the 
physical interpretation of the second factor will change. The 19 GHz channels are positively 
correlated and the other channels are negatively correlated with this factor. 

A principal components analysis of the Central Plains data set shows only the emission 
factor to be significant at the 0.05 level, as shown in Tables 9.27 and 9.28. The correlations 
are over 0.99 for all channels. This suggests that a single channel algorithm could be used for 
land surface temperature for this land surface category. 

TABLE 9.25 PRINCIPAL COMPONENTS ANALYSIS FOR AGRICULTURALJRANGE 
LAND SURFACE TYPES FOR 19,22, AND 37 GHz CHANNELS, WESTERN 
DESERT AND CENTRAL PLAINS TEST AREAS 

Factor 

Eigenvalue 4.88 0.054 0.044 0.014 
Cumulative 0.975 0.986 0.995 0.998 
t statistic 27.80 -8.18 -0.19 -2.05 
p level 0.0001 0.0001 0.8464 0.0407 



TABLE 9.26 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR 
AGRICULTURAURANGE LAND SURFACE TYPES FOR 19,22, AND 37 
GHz CHANNELS, WESTERN DESERT AND CENTRAL PLAINS TEST 
AREAS 

Channel Factor 

TABLE 9.27 PRINCIPAL COMPONENTS ANALYSIS FOR AGRICULTURAURANGE 
LAND SURFACETYPES FOR 19,22, AND 37 GHz CHANNELS, CENTRAL 
PLAINS TEST AREA 

Factor 

Eigenvalue 4.94 0.028 0.022 0.008 0.005 
Cumulative 0.987 0.993 0.997 0.999 1.000 
t statistic 22.36 -1.84 1.91 -1.59 1.03 
p level 0.0001 0.0681 0.0584 0.1145 0.3039 



TABLE 9.28 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR 
AGRICULTURALJRANGE LAND SURFACE TYPES FOR 19,22, AND 37 
GHz CHANNELS, CENTRAL PLAINS TEST AREA 

Channel Factor 

The principal component analysis for the moist soils land surface type is presented in 
Tables 9.29 and 9.30. As expected, the emission term was factor 1 and the polarization 
difference term was factor 2. These terms together accounted for 97.5 percent of the variance. 
All factors were significant, however. This is perhaps a result of correlations between land 
surface types and atmospheric conditions. For example, when the land surface is moist, the 
atmospheric water vapor and cloud water content may have more of an effect on microwave 
emission than when the surface is dry. 

TABLE 9.29 PRINCIPAL COMPONENTS ANALYSIS FOR MOIST SOILS LAND 
SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, WESTERN 
DESERT AND CENTRAL PLAINS TEST AREAS 

Factor 

Eigenvalue 4.59 0.283 0.085 0.028 0.010 
Cumulative 0.919 0.975 0.992 0.998 1.000 
t statistic 44.00 -32.05 -3.00 13.31 -5.52 
p level 0.0001 0.0001 0.0027 0.0001 0.0001 



TABLE 9.30 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR 
MOIST SOILS LAND SURFACE TYPES FOR 19, 22, AND 37 GHz 
CHANNELS, WESTERN DESERT AND CENTRAL PLAINS TEST AREAS 

Channel Factor 

The principal components and correlations for the dry soils land surface type are 
presented in Tables 9.31 and 9.32 Four factors were significant, including emission and 
polarization difference, but the first three factors accounted for 98.9 percent of the variance. 
The emission and polarization difference factors were apparent. Factor 3, characterized by 
positive correlations between the factor and the 19 and 22 GHz channels and negative 
correlations with the 37 GHz channels, was also present. 

TABLE9.31 PRINCIPAL COMPONENTS ANALYSIS FOR DRY SOILS LAND 
SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, WESTERN 
DESERT AND CENTRAL PLAINS TEST AREAS 

Factor 

Eigenvalue 4.39 
Cumulative 0.877 
t statistic 12.32 
p level 0.0001 



TABLE 9.32 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR 
DRY SOILS LAND SURFACE TYPES FOR 19, 22, AND 37 GHz 
CHANNELS, WESTERN DESERT AND CENTRAL PLAINS TEST AREAS 

Channel Factor 

The dense vegetation principal component analysis and the correlations with the factors 
are shown in Tables 9.33 and 9.34. Three factors were significant at the 0.05 level. As with 
the agricultural/range land surface type, the dense vegetation category is characterized by a very 
low polarization difference. Consequently, polarization difference did not emerge as an obvious 
factor in the analysis. Factor 2 waschara-c~rized by negative, but small correlation coefficients 
with the 19 and 37 GHz channels and a higher, positive correlation with the 22V channel. The 
coefficient of determination, however, was very low. Theoretically, a single channel, vertical 
polarization, should be sufficient to retrieve the emitting layer temperature. With the best single 
channel, the 22V, the coefficient was only 0.21. With all five channels, the coefficient of 
determination increased to 0.29. Addition of the 85 GHz channels in the regression did not 

TABLE 9.33 PRINCIPAL COMPONENTS ANALYSIS FOR DENSE VEGETATION LAND 
SURFACE TYPES FOR 19, 22, AND 37 GHz CHANNELS, WESTERN 
DESERT AND CENTRAL PLAINS TEST AREAS 

Factor 

Eigenvalue 4.65 0.156 0.097 0.053 
Cumulative 0.931 0.962 0.982 0.992 
t statistic 5.92 2.71 0.14 -3.25 
p level 0.0001 0.0075 0.0829 0.0014 



TABLE 9.34 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR 
DENSE VEGETATION LAND SURFACE TYPES FOR 19,22, AND 37 GHz 
CHANNELS, WESTERN DESERT AND CENTRAL PLAINS TEST AREAS 

Channel Factor 

improve the performance statistics. The poor performance of the retrieval algorithms is most 
likely due to the non-representative ground truth. Virtually all of the dense vegetation land 
surface types were in the mountainous areas of the Western Desert test area. The temperatures 
of the emitting surfaces, the coniferous tree canopies in the mountains, are not represented by 
the nearest climatological station. These stations tend to be in lower elevations along river 
valleys. 

Factor analysis and regression of the principal components indicated that a four channel 
linear regression model should include 19V, 19H, 22V, and 37H. The recommended four 
channel land surface temperature retrieval algorithm, without the 85 GHz channels, based on the 
Cp statistic for each of the land surface types is given in Table 9.35. It is interesting to note that 
22V was the single channel with the highest correlation with the surface temperature ground 
truth. In the factor analysis, 22V did not have the highest correlations with the individual 
factors. 

As discussed previously, the estimated variance in the ground truth in the Western Desert 
was about twice that of the Central Plains. Consequently, the algorithm development is based 
on the Central Plains data set, with the addition of the dense vegetation land surface type from 
the Western Desert. The performance statistics of the recommended algorithm are given in 
Table 9.36. The coefficients of determination range from 0.64 for dry soil to 0.81 for 
agriculturallrange land surface types. The root mean square errors are around 2.5 C. 

9.2.3.2 Algorithms With the 85 GHz Channels 

The results of the regression analysis of principal components for all land surface types 
for the Western Desert and the Central Plains is contained in Table 9.37. The factors will not 



TABLE 9.35 RECOMMENDED LAND SURFACE TEMPERATURE RETRIEVAL 
ALGORITHMS WITHOUT THE 85 GHz CHANNELS 

Temp (K) = Co + Cl*T19V + C2*T19H + C3*T22V + C4*T37H 

Surface 
m Co Cl G G 

Dense veg. (STV) 32.4 0.31 -0.26 0.82 0.04 
Aglrange (STL) 32.4 0.31 -0.26 0.82 0.04 
Moist soils (STML)' 89.6 -0.47 0.01 1.49 -0.32 
Dry soils (STD) 76.7 -0.39 0.31 1.24 -0.42 
All types (STA) 83.7 -0.49 -0.02 1.58 -0.34 

Included in case future drylmoist soils differentiation is developed. 

TABLE 9.36 PERFORMANCE OF RECOMMENDED LAND SURFACE TEMPERATURE 
RETRIEVAL ALGORITHMS WITHOUT THE 85 GHz CHANNELS 

Dense vegetation 3.03 0.27 
Agricultudrange 2.61 0.81 
Moist soils 2.32 0.79 
Dry soils 2.43 0.64 
All types 2.45 0.77 

correspond identically to the factors without the 85 GHz channels, due to the nature of principal 
components analysis. However, the dominant factors will continue to have physical 
explanations. The magnitude of the eigenvalues and the cumulative variance explained by each 
factor indicates that there is relatively little variance explained by the third through seventh 
factors (less than two percent). The p level, however, remains very low for all factors, as 
expected from the intercorrelations of the channels. 



TABLE 9.37 PRINCIPAL COMPONENTS ANALYSIS FOR ALL LAND SURFACE TYPES 
FOR 19,22,37, AND 85 GHz CHANNELS, WESTERN DESERT AND 
CENTRAL PLAINS TEST AREAS 

Eigenvalue 6.07 0.48 
Cumulative 0.867 0.936 
t statistic 59.59 -61.16 
p level 0.0001 0.0001 

Factor 

Factor 1 has a high positive correlation with all channels, as shown in Table 9.38, and 
is therefore interpreted as the emission factor. The correlations are the highest for the 19V, 
22V, and 37V channels, as expected from physical considerations. 

TABLE 9.38 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR 
ALL LAND SURFACE TYPES FOR 19,22,37, AND 85 GHz CHANNELS, 
WESTERN DESERT AND CENTRAL PLAINS TEST AREAS 

Channel Factor 

The correlations between factor 2 and the 19 and 37 GHz channels indicate that factor 
2 is due primarily to polarization difference. The 85 GHz channels are less polarized than the 
other channels as a result of increased surface and atmospheric scattering and a lower response 



to surface moisture. Factor 3 may represent a cloud factor, due to the relatively higher positive 
correlations with the 85 GHz channels. 

Principal component and correlation analyses for the Central Plains are contained in 
Figures 9.39 and 9.40 and show more variance explained by factor 1 and a higher correlation 
of all channels with factor 1. As with the analysis without the 85 GHz channels, when the 
analysis is performed on the Central Plains data set, there is less of an influence of the strongly 

TABLE 9.39 PRINCIPAL COMPONENTS ANALYSIS FOR ALL LAND SURFACE TYPES 
FOR 19,22,37 AND 85 GHz CHANNELS, CENTRAL PLAINS TEST AREA 

Factor 

Eigenvalue 6.62 0.25 0.03 0.02 0.01 
Cumulative 0.946 0.981 0.986 0.988 0.989 
t statistic 65.55 37.95 11.16 -3.13 3.71 
p level 0.0001 0.0001 0.0001 0.0018 0.0002 

TABLE 9.40 CORRELATION COEFFICIENTS OF THE PRINCIPAL COMPONENTS FOR 
ALL LAND SURFACE TYPES FOR 19,22,37, AND 85 GHz CHANNELS, 
CENTRAL PLAINS TEST AREA 

Channel Factor 

polarized emission from dry soils. Consequently, factor 2 appears to shift from polarization 
difference due to dry soils and surface moisture to an overall moisture term. This could include 
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surface moisture, cloud water, and atmospheric water vapor. Factors 3 through 7, although 
significant, account for less than two percent of the variance. The very low correlations of the 
SSMII channels with these factors renders physical interpretation more precarious. The 
interpretation of the physical rationale for each of the factors in the principal component analysis 
is similar to that of the analysis without the 85 GHz channel. The additional data is contained 
in Miller [5]. 

Table 9.41 contains a comparison of the performance of the land surface retrieval 
algorithms with and without the 85 GHz channels. In general, the incorporation of the 85 GHz 
channels improved the algorithm performance. The improvement in root mean square error was 
about 0.5 C, with a corresponding increase in coefficient of determination of 0.1. The principal 

TABLE9.41 COMPARISON OF STATISTICS FROM PRINCIPAL COMPONENT 
ANALYSIS FOR SELECTED LAND SURFACE TYPES AND TEST AREAS 
WITH AND WITHOUT INCLUSION OF THE 85 GHz CHANNELS 

All surfaces 
WD 
CP 
All 

Agric./range 
WD 
CP 
All 

Moist soils 
WD 
CP 
All 

Dry soils 
WD 
CP 
All 

Dense vegetation 
WD 

RMSE [Cl 
Without With 
85 GHz 85 GHz 

32 
Without 
85 GHz 

0.64 
0.77 
0.62 

With 
im2Hz 

0.72 
0.70 
0.72 

0.50 
0.85 
0.71 

0.71 
0.88 
0.74 

0.55 
0.64 
0.53 

0.33 



component statistics will not be in exact agreement with the statistics of the multiple linear 
regression, but will be sufficiently similar for a conclusion. The 85 GHz channels improve the 
accuracy of the land surface temperature retrieval algorithm. If the 85 GHz channels are not 
available for accurate classification of land surface type, an aggregation of all surface types leads 
to an RMSE of about 3.7 C. Scatter plots of the land surface temperature calculated with the 
recommended algorithm with the minimum air temperature show a linear dependence [6]. 

Optimum model selection based on the Cp statistic for all land surface types is shown in 
Table 9.42. The 85V is the single channel model with the highest coefficient of determination 

TABLE 9.42 MULTIPLE LINEAR REGRESSION MODEL FOR ALL CHANNELS FOR 
RETRIEVAL OF LAND SURFACE TEMPERATURE FOR ALL LAND 
SURFACE TYPES 

Channels in Repression Model 



and lowest value of the statistic, in contrast to the 22V of the analysis without the 85 GHz 
channels. The coefficients of determination indicate that only two or three terms in the 
regression equation are sufficient to produce essentially the same value as the full seven term 
model. This is due to the multicollinearity of the channels. 

A larger ground truth data set was assembled, but the areas and dates remained the same 
as previously, to compare algorithm performance with and without the 85 GHz channels. 
Additional data from days 50, 51, 53, 56, 57, and 59, 1988 were included as an independent 
data set. A multiple linear regression analysis on the Central Plains and Western Desert data 
for days 231, 234, 235, and 240, 1987 was conducted for all land surface types except snow, 
rain, and standing water. The coefficients of determination ranged from 0.15 for dense 
vegetation to 0.86 for vegetation with some water present. The RMSE's ranged from 1.87 C 
for vegetation with some water present to 3.58 C for dense vegetation. The lower statistics for 
the dense vegetation may be more of a function of the variance between the surface temperature 
observations and the temperature of the emitting canopy than of the site to site or day to day 
variance of the brightness temperatures. The same land surface type categories were constructed 
as previously. A multiple linear regression analysis was performed for each category with the 
Central Plains data set. The channels that are optimal, based on the Cp statistic and the 
statistical significance of the regression, are presented in Table 9.43 for the Central Plains data 
set only. The 85V and 37V channels are dominant, followed by the 22V and 19V channels. 
However the 85V, 37V, 22V, and 19H channels were selected for a four channel retrieval 
algorithm. The coefficients of determination showed essentially no change from the optimal 
channels. The recommended four channel land surface retrieval algorithm, with the 85 GHz 
channels, for each of the land surface types is given in Table 9.44. The performance statistics 
are given in Table 9.45. 

TABLE 9.43 OPTIMUM MODELS FOR LAND SURFACE TEMPERATURE RETRIEVAL 
FROM THE 19,22, 37, AND 85 GHz CHANNELS, BASED ON THE C(p) 
STATISTIC, CENTRAL PLAINS TEST AREA 

Agricultural/range 0.90 85V 37H 0.812 0.817 
Moist soils 6.23 85V 37V 22V 37H 19V 19H 0.851 0.851 
Dry soils 3.55 22V 85V 37H 0.622 0.634 
All types 5.55 85V 37H 22V 19V 19H 0.791 0.791 



TABLE 9.44 RECOMMENDED LAND SURFACE TEMPERATURE RETRIEVAL 
ALGORITHMS WITH THE 85 GHz CHANNELS 

Temp (K) = Co + Cl*T19H + C,*T22V + C,*T37V + C4-T85V 

Dense veg. (STV) 24.94 -1.2784 0.8800 0.5933 0.7299 
Aglrange (STL) 6.97 -0.6266 0.2716 -0.1297 1.4820 
Moist soils (STML) 23.16 -0.1873 0.5221 -0.6271 1.2320 
Dry soils (STD) 72.68 -0.4598 0.5984 +<^8828 -0.2623 
All types (STA)l 26.46 -0.3133 0.7327 -0.4469 0.9540 

Can be used if above four types cannot be differentiated. 

TABLE 9.45 PERFORMANCE OF RECOMMENDED LAND SURFACE TEMPERATURE 
RETRIEVAL ALGORITHMS WITH THE 85 GHz CHANNELS 

Surface T w  kl msua 
Dense Veg. 68 
Aglrange 237 
Moist soils 1230 
Dry soils 229 
Alltypes 1764 

1. Algorithms should be implemented, with or without the 85 Ghz channels, for land 
surface temperature retrieval. 

2. Dense vegetation will have the same coefficients as agricultural and range lands for 
the algorithms to be used when the 85 GHz channels are not available. 



3. If the land surface classification is degraded due to the loss of the 85 Ghz channels, 
an all surface types land surface temperature retrieval algorithm should be implemented. 

4. Algorithms should be deferred for surface temperatures for cloudy land, snow, cloudy 
snow, and glacial. 

Additional research should include digital thermal infrared surface temperatures under 
clear, relatively dry sky conditions as the ground truth. The logical source of this information 
is from the Operational Line Scanner (OLS) on the DMSP satellite. The major difficulty to date 
with the use of OLS thermal data as ground truth for the SSMII surface temperature retrieval 
is the difficulty in assigning a latitude and longitude for each OLS pixel (the operational uses of 
the OLS data are based on visual interpretation of the images) and merging this information with 
the SSMII information. The use of OLS data under near-ideal conditions will facilitate the 
calibration of algorithms for surface conditions of dense vegetation and forest areas, mountainous 
areas, and areas with a low density of surface weather stations. Particularly with areas of dense 
vegetation and forests, the thermal infrared channel will provide a source of ground truth that 
is representative of the emitting surface. The variance of the ground truth may also be 
determined for all land surface types and locations. The algorithms developed are intended for 
use on both ascending and descending passes with the knowledge that a bias will be inherent 
with the descending pass (late afternoon) retrieval. This bias can be determined with the use of 
OLS thermal infrared data. 

An additional recommendation is to use SSMII land surface temperature data in the 
retrieval of atmospheric profiles with other sensors on the DMSP satellite series. 
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9.3 SURFACE MOISTURE ALGORITHMS 

9.3.1 Alaprithm Develo~ment Rationale and Backeround 

Free water in pores of soil surface layers will lower the emissivity of those layers due 
to the increase in the soil permittivity. The results of several field experiments have generally 
shown a linear relationship between normalized brightness temperature and soil moisture 
expressed either on a gravimetric or percent of field capacity basis [I], [2], [3]. Wang et al. 
[3] also showed a linear relationship between normalized brightness temperatures and the 
volumetric water content in the top 10 cm layer of soils at different frequencies (1.4,5 and 10.7 
GHz). The linear variation of brightness temperatures at a particular wavelength with the 
volumetric moisture content of the soil will be approximately the same for most soil texture 
types. 

Emitted microwave brightness temperatures have also been correlated to estimates of 
surface moisture such as the antecedent precipitation index (API) [4], [5], [6]. High correlations 
were found at several frequencies including 19 GHz and 37 GHz. Recent studies by Choudhury 
et al. [7] and Owe et al. 181 have also used the API as a measure of soil surface wetness and 
incorporated soil evaporation in the estimation of the recession coefficient. 

Several physical factors affect the sensing of soil moisture at different microwave 
frequencies. At short wavelengths, most of the brightness temperature contributions from a soil 
are emitted by a shallow layer at the soil surface. For a wet soil, this moisture sensing depth 
is on the order of ten percent of the wavelength. This would represent an emitting layer of only 
a couple of millimeters at the 19.35 GHZ (1.55 cm) channel of the SSWI. Soil surface 
roughness and texture also affect the measured brightness temperatures by decreasing the 
sensitivity to soil moisture. This was shown to be the case by Wang et al. [3] and Newton and 
Rouse [9] for several microwave frequencies. 

Vegetation cover will also decrease the sensitivity to soil moisture due to self emission 
as well as scattering and de-polarization of microwave radiation emitted by the soil. Several 
studies have indicated that longer wavelengths can better penetrate vegetation cover and therefore 
are better suited for soil moisture sensing. Vegetation effects on microwave sensitivity to soil 
moisture have been studied and discussed by Wang et al. [lo], Burke and Schmugge [ll], Theis 
and Blanchard [12] and Ulaby et al. [13]. 

The short wavelengths of the SSMII will result in a small soil penetration depth as well 
as a reduced sensitivity to surface moisture if any vegetation is present above the soil surface. 
In addition, the large SSMII footprint sizes will lead to the introduction of noise due to surface 
type variability as well as the random nature of precipitation occurrences and spatial patterns at 
that scale. For these reasons, the correlation of SSWI variables based on brightness 
temperatures with an antecedent precipitation index was deemed the best approach for moisture 
retrievals at the soil surface. 



9.3.2.1 Passive Microwave Data 

SSMII overpasses over the Central Plains and Western areas of the United States were 
selected based on the potential presence of surface moisture. This was determined by locating 
storm systems with significant precipitation on daily and weekly weather maps published by 
NOAA. Only large frontal systems were selected as small convective storms can be a source 
of error due to the spatial resolution of the sensor and the relatively sparse distribution of 
weather stations at that scale. The SSMII data were ordered to cover a time period ranging from 
1 or 2 days before the storm to several days after it. In this way, it was possible to detect 
abrupt changes in surface moisture on the day of the storm and the subsequent dry-down period. 
SDR brightness temperatures over the area of interest were downloaded to disk using software 
supplied by NRL for the VAX VMS operating system. The data were then submitted to a set 
of programs developed at Texas A&M University which removed header records and prepared 
the data for the surface-type classification expert system program [14]. The classification scheme 
as described in section 9.1 determined the major surface types, i.e., water, snow, and dry and 
wet soil surfaces as well as vegetation densities based on average polarizations in the 19.35 GHz 
and 37.0 GHz channels. Classified footprints were gridded to 0.25 degree latituddlongitude 
cells which contained the seven brightness temperatures and a surface type classification code. 
Because the distance between concentric A-scan footprints of the SSMII is on the order of 0.25 
degrees at mid-latitudes, most of the time only one footprint was placed in each 
latituddlongitude 0.25 grid cell. 

9.3.2.2 Ground Truth Data 

Climatic data used as "ground truth" in this study covered a period from July to October 
1987 and January to December 1988 and consisted of daily maximum and minimum 
temperatures and precipitation amounts from the cooperative network of weather stations 
operated by NOAA. The data tapes were ordered from NOAA and were downloaded to disk 
using a VAX mainframe computer with special software developed for this purpose. The 
climatic variables for each weather station were gridded to 0.25 degree latituddlongitude cells 
for the entire USA and for each calendar day of the year. If more than one weather station were 
present in a particular grid cell, the values for each climatic variable were averaged. 

Daily antecedent precipitation index (API) values were calculated for each 
latitudellongitude cell based on the available temperature and precipitation data. The API was 
calculated as: 

API, = (API,., + PJ* K 

where K is the recession coefficient, P is the effective precipitation, and , and ,., represent the 
current and preceding days respectively. 



Two methods of estimating the recession coefficient (K) were used: (1) a method 
proposed by Wilke and McFarland [6] where the K factor was allowed to vary between a 
minimum of 0.70 in the summer and a maximum of 0.92 in the winter to account for seasonal 
changes in evaporation potential, and (2), a K factor described by Choudhury et al. [71: 

where E. is the evaporation on day i and Wm is the maximum depth of soil water available for 
evaporation. 

As stated by Choudhury et al. [7], the magnitude of Wm is uncertain because of the small 
sampling depth at microwave frequencies. They concluded based on a sensitivity analysis that 
the correlations between brightness temperature and API consistently increased as Wm is 
decreased. Due to the small moisture sensing depth at 19.35 GHz and the empirical nature of 
the above mentioned equation, five recession coefficients were computed for values of Wm equal 
to 5,7.5, 10, 15, and 20 mm which resulted in five API values with notation MI,, API,, MI,, 
APL, and APL. The notation APL was used for the API estimated using the recession 
coefficient proposed by Wilke and McFarland [6]. Because the API value for a given day at a 
given grid cell location depends on the API of the previous day, missing records in weather data 
files were checked and reported in the output file as number of days since last missing record. 
If for a given grid cell location on a given day, the precipitation data were available but no 
temperature data were reported, an estimate of the maximum and minimum temperatures for that 
grid cell was obtained by averaging data from surrounding cells. This was acceptable because 
temperature is a fairly spatially conservative variable across similar elevations. For these cases, 
a flag was set in the output file in order to allow further screening of those data if their 
reliability was questioned during the analysis. An additional variable calculated for each grid 
cell was the number of days since the last rainfall event. In this way its significance in the 
algorithm development could be evaluated. 

The potential evaporation or evapotranspiration was computed using the Hargreaves 
equation [15]. This equation was selected because it required input data which were readily 
available such as the day of the year, the latitude, and daily minimum and maximum 
temperatures. The Hargreaves equation is in good agreement with the Penman equation in 
relatively dry climates with no or moderate wind. The Hargreaves equation can be written as: 

ETP = 0.0023 Ra (TC + 17.8) TD0.' (3) 

where ETP is the potential evapotranspiration for grass in mmlday, Ra is the extraterrestrial 
solar radiation in mmlday, TC is given by (Tmax + Tmin)/2 (Average Daily Temperature), TD 
is given by (Tmax - Tmin), Tmax is the maximum daily temperature, and Tmin is the minimum 
daily temperature. 



The extraterrestrial radiation can be expressed as a function of the latitude and the day 
of the year: 

Ra= 9167.32 ES [OM sin(Lat) sin(DEC) +cos (Lat) cos (DEC) sin(0W I 
596-0.55TC 

where: 
Lat = latitude of the location in radians, 
DEC = 0.40876 cos(0.0172142 ( J + 192)), 
J = day of year, 
ES = 1.00028 + 0.03269 cos(0.0172142 (J + 192)), 
OM = Arc.cos (-tan(Lat) tan(DEC)). 

The latitude of the lower right hand comer of each grid cell was used as the latitude 
value in this equation. Other ground truth data used consisted of the Major Resource Regions 
and Major Land Resource Areas of the United States (MLRA) by the Soil Conservation Service 
[16]. This land classification scheme groups areas with similar soils, natural vegetation, climate, 
and topography and assigns a code number to each area. These code numbers were also gridded 
to 0.25 degree cells. 

9.3.2.3 Regression Data File Preparation 

Gridded classified SSMII files were merged with gridded API files for the appropriate 
dates and overpasses with a computer program, resulting in output files which contained primary 
data for statistical regression. The implied assumptions with the form of the API equation used 
(Equation 1) were that no evapotranspiration occurred during the night and that the precipitation 
events occurred between 12 am and 6 pm. Therefore, the morning overpass gridded SSMII files 
were merged with the gridded API file for the previous day while afternoon overpasses were 
merged with API files for the same day. If no API data were available for a particular 0.25 
degree cell, data from that cell were omitted in the output daily regression file. The merged 
daily regression files contained the latitudellongitude location of each grid cell, the 
corresponding seven measured brightness temperatures, the classified surface type code, the 
surface temperature, the precipitation amount for the day, the number of days since the last 
rainfall event for that location, the MLRA region code, missing data flags and 6 estimated API 
values. All gridded daily files were then transferred from the VAX to a microcomputer via 
HERMIT for further preparation. 

A computer program was written for the PC to read these files and search for locations 
with high API values in order to confirm on independent weather maps that storms actually had 
occurred. A second computer program screened the regression files with the purpose of building 
time series for a given MLRA region (MLRA region files) which included data prior to the 
storm as well as for the dry-down period after the storm. In this procedure, grid cells with at 
least one high API value were detected and tagged during the successive reading of all input 
files. The average polarization in the 19 GHz and 37 GHz channels was calculated for dry 



surface conditions just prior to the storm in order to further categorize vegetation cover density 
for the tagged grid cells. During a second reading of the input files, time series for grid cells 
with at least one high API value were created and the data placed in different MLRA sub-region 
output files according to vegetation of the dry cell. A maximum of six possible output files 
(MLRA sub-region files) were created for each MLRA region according to vegetation cover 
density for the period of analysis. The six initial classes corresponded to average polarizations 
in the 19.35 GHz and 37.0 GHz of: (6) less than 4 K, (5) between 4 and 6 K, (4) between 6 and 
8 K, (3) between 8 and 10 K, (2) between 10 and 12 K and, (1) greater than 12 K. 

Data Analysis 

The regression analysis was conducted on MLRA sub-region files grouped according to 
vegetation density class. The ground truth variables consisted of the 6 API values while the 
SSMII variables consisted of several forms of normalized brightness temperatures and apparent 
emissivities. Apparent emissivities were obtained for each channel by dividing the brightness 
temperatures by the surface physical temperature. As simultaneous OLS surface temperature 
data were not available, the measured air temperature at the time of the overpass was used. Air 
temperatures can be fairly good substitutes under stable climatic conditions. For ascending 
overpasses, the minimum air temperature was used as it usually occurs close to 6 am in a semi- 
arid environment. For descending overpasses, the temperature at 6 pm was predicted using a 
sinusoidal curve adjustment based on maximum and minimum temperature for the day [IT. 

For best operational use, the surface moisture algorithms ideally should be based solely 
on SSMII brightness temperatures without requiring any additional ground information. Because 
both vertically and horizontally polarized brightness temperatures are influenced by the physical 
soil and vegetation temperatures in the same way, but vary in magnitude with moisture (at the 
53' incidence angle of the SSMII), normalized brightness temperature ratios consisting of 
horizontal channels divided by the vertical channels were tested as well. As it will be seen later 
in the analysis section, the T19H GHz channel was found to be the most sensitive to surface 
moisture. The following SSMII variables were tested : 

As previously mentioned in section 9.3.1, most of the correlations between microwave 
emission versus surface moisture have been explained by linear relationships. This was 
examined in the data analysis by using the following models: 



where: 
API = Antecedent Precipitation Index (APL, AH,, .. . , or APIJ, 
X = brightness temperature, apparent emissivity, 

or normalized temperature ratio, 
bo, Pl = regression coefficients. 

The second model tested was a logarithmic transformation of the API values versus the 
radiometric data: 

The third model correlated the SSMII variables with estimated reflectivity coefficients 
obtained by transforming API values using a simple radiative transfer model: 

The radiative transfer equation was defined in section 9.1 and the assumptions involved 
are described by Ulaby et al. [18]. In this procedure, volumetric soil moisture values were 
estimated from API values using 6, = Cma,, API. The value of the C- coefficient was 
determined by looking at its effect on the goodness of the fit of the linear model. The soil 
dielectric constant can be estimated from the volumetric soil moisture wntent using an empirical 
equation proposed by Hallikainen et al. [19]: 

where: 
9, = volumetric soil moisture wntent, 
S = sand content in %, 
C = clay content in %, 
a,b,c = empirical coefficients. 

Hallikainen et al. [19] provide values for the empirical coefficients to determine the real 
and imaginary part of the dielectric constant for frequencies between 1.4 GHz and 18 GHz. 
They showed that as the frequency increases, the soil dielectric constant versus soil moisture 
relationship is less sensitive to soil texture. At 18 GHz the influence is minimum. For this 
study, the empirical dielectric behavior at 18 GHz was assumed to be applicable to the 19.35 
GHz which was the SSMII frequency selected for the soil moisture algorithm development. 

The real and imaginary parts of the dielectric constant were then used to estimate the 
specular reflectivity coefficient after the trigonometric transformation of the following equations 
[18]: 

I 12 



Finally, the specular reflectivity was then used to estimate the soil surface reflectivity 
coefficient (Taum). The use of this regression model for surface moisture prediction however 
would require an iterative method to solve for API from rÃ£Ã because the equation is implicit 
for unknown soil moisture. 

The regression analysis was conducted on a VAX using the SAS statistical package and 
on a microcomputer using a simple regression program written in Turbo Pascal 5.0. The latter 
program was tailored to handle the above mentioned models, allowing for the selection of 
different SSMII and ground truth variables. Figure 9.7 represents a general flow-chart of the 
data analysis methodology. 

9.3.3 Selection of the SSMII Channels Most Sensitive to Surface Maim 

9.3.3.1 SSMII Channel Selection 

Many studies in passive microwave remote sensing have shown a decrease in sensitivity 
to surface moisture as wavelengths decrease, due to smaller penetration depths. To test this fact, 
stepwise regression using the logarithmic model was conducted with SAS on 21 MLRA sub- 
region files for the 1987 data set. Regressions of apparent emissivities (SSMII brightness 
temperatures divided by the surface physical temperature) versus API were carried out and in 
all cases, the channel resulting in the highest correlation was the 19.35 GHz horizontal 
polarization. The decrease in correlation was quite drastic when other channels with shorter 
wavelengths were used in the regression. Based on this analysis and due to the larger available 
penetration depth and sensitivity at the 53' incidence angle, the 19.35 H channel was considered 
best suited for surface moisture retrievals. 

9.3.3.2 Vegetation Cover Effects 

Vegetation overlying the soil surface will decrease the sensitivity of moisture detection 
at the short wavelengths of the SSMII. At high vegetation densities, retrievals of surface 
moisture are physically impossible. To illustrate this fact, several time series of SSMII 
signatures, API values, and precipitation values were plotted for single latitudellongitude cells 
in regions with different vegetation covers. The SSMII variables or signatures represented in 
the following graphs consist of the apparent emissivity for the 19.35 GHz horizontal channel 
(el9H = T19HITs) and the normalized temperature ratio 19.35 H GHz divided by the 19.35 V 
GHz channel (T19HIT19V). The API values were obtained using Equation 1 and 2 with a Wm 
of 10 mm. 
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Figure 9.7 Global flow chart of data analysis methodology. 



In Figure 9.8, for an agricultural area in West Texas, the normalized temperature 
(T19H/T19V) at the beginning of the season was relatively low, gradually increasing and 
peaking around day 220. The increase in normaliked temperature as the season progressed was 
a result of a decrease in polarization caused by increased vegetation density. Precipitation events 
resulting in considerable surface moisture caused an abrupt lowering of the SSWI variables due 
to a decrease in soil emissivity. The storm on &y 141 resulted in a much greater microwave 
response than the larger event around day 190. This could have occurred due to a combination 
of two factors: a denser vegetation cover on day 190 andlor a localized storm which did not 
thoroughly wet the entire footprint. Figure 9.9 shows a similar pattern with peak vegetation 
occumng around &y 180. A well vegetated footprint from a location further east is shown in 
Figure 9.10. The normalized temperature had a value closer to one indicating small 
polarizations and the sensitivity to surface moisture resulting from precipitation was lower. In 
all the series examined, the appmnt emissivity carried more unexplained variability than the 
normalized temperature. 

To further study vegetation effects on surface moisture retrievals, an analysis was also 
conducted on the MLRA sub-region files for the central plains of the United States for the year 
1988. In this way, differences due to vegetation types and seasonal effects could be considered. 
Table 9.46 shows the resulting vegetation density classifications of the sub-region files for the 
three seasons analyzed. A change in vegetation density over the time period studied (from 
spring to fall) occurred for most of the areas under investigation. For cropland areas in the 
central plains, spring time is characterized by relatively bare soils followed by a rapid increase 
in vegetation density at the end of spring, to full wver during summer and low vegetation cover 
after harvest in late summer or fall. Agriculture in the central plains relies mostly on natural 
precipitation with the exception of the south eastern plain regions (West Texas, Oklahoma, East 
Colorado, and Nebraska) which have a significant area under imgation. Other major vegetation 
types consist of rangeland, and pasture. Natural vegetation is mostly comprised of short, 
medium, or tall grasses with peak vegetation density occurring in late spring and early summer 
depending on the latitude. Changes in vegetation density for this type of land wver are not as 
extreme as the case of cropland regions. The area covered in this study ranged from a latitude 
of 30 to 49 degrees north latitude, which implied a spectrum of vegetative calendars according 
to location and elevation. 

The MLRA sub-region files were clipped to contain &ta for a period of not more than 
25 days in a particular season and included data from the dry surface prior to the storm, the 
passage of the storm and increase in surface moisture, and the subsequent recession period as 
the surface dried. For most data sets shown in Table 9.46, the average polarization over dry 
soil was highest in the spring, lowest in the summer, and showed an intermediate value in the 
fall. Polarizations in spring and fall were similar for cropland areas, with a decrease of several 
Kelvins in the summer. Some regions did not show any significant changes across seasons and 
were either 1) semi-arid regions or lakes if the average polarization was large, or 2) dense 
natural vegetation if the average polarization was low. Vegetation density had a major influence 
on the sensitivity to surface moisture. Figure 9.11 shows distinct differences between the three 
seasons for MLRA 106 (Nebraska and Kansas kss-Drift Hills) in the Central Feed Grains and 
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Figure 9.8 SSMII signature response to surface moisture over a grid cell 
with medium density vegetation. 
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Figure 9.9 SSMII signature response to surface moisture over a grid cell 
with low density vegetation at the beginning of the season. 
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Figure 9.10 SSWI signature response to surface moisture over a grid 
ceil with dense vegetation. 
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Figure 9.11 The influence of vegetation cover on the sensitivity to 
surface moisture for the MLRA 106 region. 
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Livestock Region. Corn and wheat are the main crops in the area. The average polarization 
in the 19 and 37 GHz channels over dry grid cells was 8.2 K for spring, 4.6 K for summer, and 
7.0 K for fall. The greater sensitivity to soil moisture in the spring resulted in lower normalized 
temperatures as API values increased. Figure 9.12 corresponds to MLRA 103 (Central Iowa 
and Minnesota Till Prairies), a corn and soybean region with overall denser vegetation in the 
summer and fall seasons. The average polarization over dry grid cells was 7.5 K in the spring, 
4.5 K in the summer, and 5.4 K in the fall. 

SSM/I Signature Response to Surface 
Moisture for MLRA 1 0 3 

Figure 9.12 The influence of vegetation cover on the sensitivity to surface moisture for the 
MLRA 103 region. 

Analysis of the T19HIT37V versus API relationship for the MLRA sub-region files lead 
to the following conclusions: 

1) The strongest correlation between T19HIT37V and API occurred in the Northern 
Great Plains Spring Wheat Region (MLRA 54, 55B, 56), in the Central Great Plains Winter 
Wheat and Range Region (MLRA 70, 71, 73, 77, 78), and in the Central Feed Grains and 
Livestock Region (MLRA 102A, 102B, 106). The calculated polarization difference over dry 



soil for those regions was usually relatively high in spring (7-10 K), low in summer (4-6 K), and 
high again in fall (6-10 K). 

2) The Desertic Basins, Plains, and Mountains (MLRA 42) located in New Mexico and 
Texas had high polarizations over dry soils suggesting low vegetation densities. However, 
precipitation over that area was mainly due to local convective storm systems. At the SSMII 
resolution scale, the correlation between T19HJT37V and API was low even over footprints with 
low density vegetation. 

3) Observations in the Western Great Plains Range and Irrigated Region (MLRA 65, 
67, 69, 70) resulted in usually good correlations. The Nebraska Sand Hills (MLRA 65) in the 
spring had high average polarization over dry soil. However, high API values weren't always 
associated with low T19HlT37V ratios. Most of the soils in that region are deep and sandy 
which result in fast drainage and low moisture retention. A large part of this area is also under 
irrigation (sprinkler and sub-irrigation). 

4) The screening program classified the MLRA 119 region (which is about 76 percent 
forested) as high density vegetation (class 6) for the spring, summer, and fall seasons. 
Observations over time did not show any significant decrease in brightness temperatures for 
large API values. 

Three main vegetation density classes were selected from the original six using 
regression analysis on the data of Table 9.46 and moisture retrieval equations would be 
developed. These classes and their respective threshold values were: 

1) Low density vegetation: for avg. pol. diff. > 8 K 
2) Medium density vegetation: 6 K < avg. pol. diff. < = 8 K 
3) Medium high density veg.: 4 K < avg. pol. diff. < = 6 K 

where avg. pol. diff. is defined by: (19V + 37V)/2 - (19H + 37H)/2. 

A fourth class (dense vegetation) would encompass average polarizations of less than 
4 K. However, a moisture retrieval equation was not developed for this class due to very small 
sensitivities. 

The clipped MLRA sub-region files were randomly grouped into the three above 
mentioned classes according to average polarization prior to the storm. Two independent data 
sets were created for each class: one for algorithm development and one for verification. 

The analysis was conducted on MLRA sub-region files stratified according to vegetation 
density and generated by the screening program described in 9.3.2. The objectives and general 
procedure of algorithm development were to: 



1) Test the use of different SSMII variables for model development and select the most 
sensitive to surface moisture. 

2) Select the most appropriate API values according to moisture sensing depth. 

3) Select the statistical model and test against independent data. 

4) Develop and test the surface moisture retrieval algorithm logic. 

Selection of the Best SSMII Variable For Algorithm Development 

Microwave brightness temperatures are influenced by the physical temperature of the 
emitting surface; therefore, the apparent emissivity (brightness temperature divided by the 
physical temperature) should be a more accurate indicator of surface moisture because it removes 
some variability in the observations due to changes in the surface physical temperature. For this 
reason, the apparent emissivity along with normalized 19.35 H GHz brightness temperatures 
using the 19.35 GHz and 37.0 GHz vertical polarization channels were compared in order to 
select the most significant SSMII variable for algorithm development. 

Table 9.47 shows the correlation coefficients obtained for the linear model between the 
different SSMII variables tested and the AH,. The best correlation was obtained for the 
normalized brightness temperature T19HlT37V. Physically, this can be explained by the fact 
that the 37 GHz channel is closer to the skin temperature due to its smaller penetration depth. 
The apparent emissivity using air temperature (el9H) resulted in the worst correlation for most 
cases. Unfortunately, surface skin temperatures were not available for this research so air 
temperatures recorded by the weather station network were used instead. This introduced some 
additional unexplained variance to the data. 

TABLE 9.47 CORRELATION COEFFICIENTS OBTAINED FOR THE LINEAR MODEL 
BETWEEN SSMII VARIABLES AND AP13 FOR DIFFERENT VEGETATION 
CLASSES 

Vegetation correlation Coetticient 
Density T19H el9H T19HJT19V T19HIT37V 2 * T19HI 
Class (T37V+T19V) 

Models: :? b AP13 
H/(T19V+T37V) = a + b AP13. 



The relationship between API and normalized brightness temperature was non linear for 
large API values. Therefore, AP13 values greater than 70 mm were not included in this analysis. 

9.3.4.2 Selection of the API Ground Truth Values 

The linear model was used to determine the best correlation between API and the 
normalized brightness temperature (T19HIT19V). As described in section 9.3.2, each file 
prepared for statistical analysis contained a set of 6 API values, five of which were computed 
using a recession coefficient estimated from local potential evapotranspiration with a soil water 
depth available for evaporation (WJ of 5,7.5, 10, 15, and 20 mm (designated as API, to AN5, 
respectively). Correlation coefficients obtained through this analysis are shown in Table 9.48. 
The best correlation among the three vegetation density classes resulted from the API, (Wm = 
15 mm). Except for one case, the APL resulted in poorer correlation coefficients than the API 
values derived from daily evapotranspiration. 

TABLE 9.48 CORRELATION COEFFICIENTS FOR DIFFERENT API ESTIMATES 
USING THE LINEAR MODEL 

Vegetation Correlation Coefficient 
Density API, API, API, Apb API5 A% 
Class 

Model: TI9H7T37V = a + b API. 

Vegetation Density Class: 

CLASS 1: r 19V bT37V)l2 -819H F7I-912 > 8 K 
CLASS 2: K < 19V + T3 12 - 19H + 
CLASS 3: 4 K < 19V + T37V 12 - 19H + 

Model Selection 

The relationship between volumetric moisture content and normalized temperature is 
non-linear according to the Radiative Transfer Model (RTM). Such a trend was observed in the 
data for large API values when normalized temperatures (T19HlT19V) were plotted against API 
for footprints grouped by MLRA class (Figure 9.13). It appeared from the observation and 
regression analysis of several such cases that the relationship became non-linear for APb values 
greater than 70 mm. 
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Figure 9.13 Normalized temperature versus API relationship showing the decrease in 
sensitivity to surface moisture for large API values. 

The third model tested, which used an estimated soil surface reflectivity coefficient 
based on the API and the RTM, resulted in a better correlation for those data sets with very 
large API values, due to linearization of the data. However, that model was deemed impractical 
to be used for the final surface moisture retrieval equations because the surface reflectivity 
coefficient is implicit for API when the normalized temperature is known. In addition, and an 
abnormally low normalized temperature could lead to very large and unrealistic API estimates. 

The linear model was determined to be the most appropriate and simple for algorithm 
development providing that vegetation density was taken into consideration. Therefore, 
observations with API, values greater than 70 mm were not included in the analysis so that the 
linear model would apply. 

Curve fitting was conducted on the three regression data sets representing the three 
vegetation densities. The normalized temperature (T19HJT37V) was expressed as a linear 
combination of API.,. Table 9.49 shows the slope and intercept as well as the regression 
coefficients obtained. The resulting regression equations are plotted together in Figure 9.14. 
The absolute value of the slope was directly proportional to the average polarization in the 19.35 



GHz and 37.0 GHz channels prior to the storm and thus inversely proportional to the vegetation 
density. The intercept (T19HJT37V for APb = 0) increased as the vegetation density increased 
due to the decrease in polarization. As expected, the standard error of estimate for the API 
increased as the vegetation density increased. 

Vegetation Density Slope Intercept R rror 
Class i?A?&%p. Zk., (mm) 

w Density 
kedium Density $:%% k%i - ::% ::K 
Med High Density -0.000580 0.9902 -0.7137 0.0098 12.0 

Model: T19H/T37V = a + b APb. 
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Figure 9.14 Normalized Temperature versus API, regression lines for three vegetation 
densities. 



The model scatter plots and corresponding residual plots for each vegetation density class 
can be seen in Figures 9.15 through 9.20. The residual plots indicate that the relationship 
between T19HlT19V and API can be assumed linear for APL values less than 70 mm. The 
T19HlT19V residuals were larger for observations over low density vegetation (maximum of 
0.05) and medium density vegetation. For relatively high density vegetation, the residuals were 
less than 0.03. This is in agreement with passive microwave theory as the variability in 
normalized temperature should be smaller for observations over vegetated areas. The largest 
residuals found in the data sets always corresponded to an overestimation of T19HIT37V for 
small API values. In other words, relatively small API values were sometimes associated with 
low normalized temperature values. This can be explained by the fact that small precipitation 
depths uniformly spread over a SSMII footprint area just prior to the satellite overpass could 
result in a low normalized temperature. contamination by water bodies not detected by the 
classification scheme would also produce the same effect. 

Other sources of noise resulted from the methodology used in estimating the API and 
merging those gridded files with the SSMII gridded files. The assumption that precipitation 
events occurred between 12 am and 6 pm might not have held for all cases. If rainfall occurred 
at night (after 6 pm), the morning SSMII overpass would record low brightness temperatures 
but the computed API values would have included the recession coefficient for the previous day. 
In addition, some weather stations report on an evening schedule (5 or 6 pm) and a precipitation 
event occurring after 6 pm would be considered the next day. These two facts could lead to 
observations in the data where abnormally low normalized temperatures were associated with 
API values of zero. The alternative however, would have been to group the morning SSMII 
overpasses with API values based on precipitation of the same day. This would have lead to 
high API values associated to high normalized temperatures for precipitation occurring after 
6 am. These cases would have been more common, producing numerous leverage points in the 
data which would have artificially reduced the slope of the regression line. The heterogeneity 
of precipitation over a 30 km grid cell even for the large frontal systems used in this analysis 
resulted in some observations with high API values being paired with normalized temperatures 
higher than expected. Such problems are unavoidable at the spatial resolution of the SSM/I. 

9.3.4.4 Model Testing 

The regression equations for each vegetation density class were tested with independent 
data sets described in section 9.3.2. These equations are shown in Table 9.50 in their 
operational form, as inversions of the equations developed in Table 9.49. If API values 
predicted by the regression equations were negative, they were set to zero, and if they were 
larger than 70 mm, they were set to 70 mm. Figures 9.21 to 9.23 show plots of the predicted 
API versus actual "ground truth API" values. The correlation between predicted API and actual 
"ground truth" API was satisfactory for the three vegetation density classes. The best 
correlation occurred for the low density vegetation class (R = 0.7686). 
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Figure 9.15 Scatter plot and regression line for the low density vegetation class (R = - 
0.7835). 
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Figure 9.16 Residual plot for the low density vegetation class. 



Scatter Plot and Regression line 
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Figure 9.17 Scatter plot and regression line for the medium density vegetation (R = - 
0.6785). 
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Figure 9.18 Residual plot for the medium density vegetation class. 



Scatter Plot and Regression line 
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Figure 9.19 Scatter plot and regression line for the medium high density vegetation class 
(R = -0.7137). 
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Figure 9.20 Residual plot for the medium high density vegetation class. 



TABLE 9.50 RECOMMENDED SURFACE MOISTURE RETRIEVAL ALGORITHMS FOR 
THREE VEGETATION DENSITY CLASSES 

Vegetation Density Class Bl A1 TEST 

Low Density Vegetation -675.22 659.35 
1126.58 

[bl > 8K 
Medium Density Vegetation -1145.48 6 < [ b ] ; S 8 K  
Med High Density Vegetation -1724.14 1707.24 4 <  [b] S 6 K  

API = A1 + Bl T19HIT37V [b] 19V + 37V - 19H + 37H 
2 2 
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Figure 9.21 Plot of predicted versus actual APb surface moisture values for the 
independent data set (R = 0.7686). 
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Figure 9.22 Predicted versus actual AP14 values for the independent data 
set (R = 0.6871). 
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Figure 9.23 Predicted versus actual API, values for the independent data 
set (R = 0.7226). 
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9.3.4.5 Surface Moisture Prediction Algorithm 

The normalized temperature ratio does not vary considerably from day to day over dry 
soil conditions. In regions with similar climatic conditions to the Central Plains of the U.S., it 
will slowly increase and decrease over the growing season following the growth and senescence 
of natural vegetation or the seasonal variations in agricultural vegetation densities. However, 
if the vegetation is not too dense, a precipitation event will cause a sharp decrease in the ratio 
which will gradually, over a period of time, return to its value prior to the event, assuming that 
the vegetation density has not changed considerably during the period. 

Thus, for the best use of the developed models, we recommend that the algorithm be 
implemented in the dynamic database framework described in the land surface type classification 
section of this report (section 9.1). This implies calculating and storing a running average of 
certain SSMII variables for grid cell locations of interest, which are updated at each available 
overpass of the instrument. 

The following steps are recommended for the use of the algorithm: 

1) Compute a running average of T19HlT37V and of the average polarization in the 19 
and 37 GHz channels for each overpass and grid cells in the area of interest. The average 
polarization is used as a vegetation density index while the T19HlT37V normalized temperature 
is the indicator of surface moisture. The running averages would include brightness 
temperatures for the five last overpasses. 

2) Before including the SSMII variables from the latest overpass in the running averages, 
compare T19HlT37V to its running average. If T19HlT37V is not significantly different and 
the surface type classification code does not indicate moisture, the soil is considered dry. If a 
significant reduction in T19HlT37V has occurred and the surface type classification code 
indicated moisture, the surface is considered moist or wet. 

3) If the soil surface is determined to be dry, include the latest values for the SSMII 
variables in the running averages. 

4) If the soil is classified as moist, the latest values for the SSMII variables should not 
be included in the running averages. The value presently in the database for the average 
polarization in the 19 GHz and 37 GHz channels is used to select the appropriate surface 
moisture retrieval equations for that vegetation density class. 

5) For subsequent overpasses, estimate surface moisture using the selected equation until 
the predicted API reaches zero or until the T19HlT37V normalized temperature is close to the 
running average value prior to the storm. 

The algorithm was applied to many grid cells representing different MLRA regions in 
the central plains over the snow-free period in 1988. Examples are shown in Figures 9.24 and 



Surface Moisture Retrieval Algorithm 
(MLRA 55B, Lat: 45.3, Long: 98.3) 
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Figure 9.24 Application of the surface moisture retrieval algorithm to a 
arid cell in the Central Black Glaciated Plains Region in North Dakota - 
during the snow-free period in 1988. 
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Figure 9.25 Application of the surface moisture retrieval algorithm to a 
grid cell in the Rolling Till Prairie Region of Eastern South Dakota, 
during the snow-free period of 1988. 
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9.25 for two different MLRA regions. The algorithm reasonably predicted surface moisture for 
both large and small precipitation events. 

9.3.5 Qbservations and Recommendations 

The developed surface moisture retrieval algorithms are satisfactory considering the 
physical limitations of the SSMII instrument for this purpose. The short wavelengths of the 
SSMII channels only permit very small soil moisture sensing depths. Vegetation is an 
additional complication which causes further decreases in moisture sensitivity. The large 
footprint size at 19 GHz introduces unavoidable noise due to the spatial variability in surface 
types as well as the random nature of precipitation and consequently soil moisture at that scale. 
Therefore, these algorithms are a compromise, retrieving surface moisture with the API 
surrogate while taking into consideration vegetation density effects. Surface type variability 
effects are partially removed in the classification scheme as the retrieval equations only apply 
to certain surface types i.e. moist soil and arable soil. Under flooded conditions, the API will 
usually be greater than 70 mm rendering accurate retrievals almost impossible due to the non- 
linear nature of the response. 

The most accurate operational use of these algorithms will require the maintenance of 
running averages for the appropriate SSMII variables within a dynamic database continuously 
updated with each overpass as described in section 9.3.4.5. The running average of SSM/I 
variables are necessary for establishing the vegetation cover density and selecting the appropriate 
retrieval equation. 

If the use of the dynamic database is not possible, the retrieval equations can be used 
over certain surface type classifications providing the predictions are limited to zero for the 
lower limit and 70 mm for the upper limit. It should be understood that the errors in surface 
moisture retrievals could be greater than the standard errors described in the analysis section. 
The applicable surface type classifications would be moist soils and wet soils. The equations 
would not be applicable to the other surface types.. 

Theoretically, volumetric soil moisture to a certain depth can be estimated from a time 
series of soil surface temperature and moisture, both retrievable with the SSMII. This would 
require the knowledge of certain soil physical characteristics such as water holding capacity, 
infiltration and hydraulic conductivity. At the spatial resolution of the SSM/I however, any such 
modelling attempt would be questionable. As an alternative, a gross value of soil moisture for 
a grid cell location could be estimated during a limited period after a storm by assuming an 
average value for the soil water holding capacity of the grid cell and distributing the retrieved 
surface moisture down to a certain depth of the soil profile. The average value of soil water 
holding capacity would be stored in the database as well. 



9.3.6 References 

T. P. Schmugge, P. Gloersen, T. Wilheit, and F. Geiger, "Remote sensing of soil 
moisture with microwave radiometers," J. Geoohvs. Res., vol. 79, pp. 317-323, 1974. 

T. J. Schmugge, "Effect of texture on microwave emission from soils," IEEE T r a n ~  
Geosci. Remote Sensinc, vol GE-18, pp. 353-361, 1980. 

J. R. Wang, P. E. O'Neill, T. J. Jackson, and E.T. Engman, "Multifrequency 
measurements of the effects of soil moisture, soil texture and surface roughness," 
-, V O ~ .  GE-21, pp. 44-51, 1983. 

M. J. McFarland, "The correlation of Skylab L-Band brightness temperatures with 
antecedent precipitation," Conference on Hydrometeorology, AMS, Boston, MA, 1976. 

M. J. McFarland and B.J. Blanchard, "Temporal correlations of antecedent precipitation 
with Nimbus 5 ESMR brightness temperatures," Second conference on 
hydrometeorology, AMS, Boston, MA, 1977. 

G. D. Wilke and M. J. McFarland, "Correlations between Nimbus 7 scanning 
multichannel microwave radiometer (SMMR) data and an antecedent precipitation index," 
u, vol. 25, pp. 227-238, 1986. 

B. J. Choudhury, M. Owe, S. N. Goward, R. E. Golus, J. P. Omsby, A. T. C. Chang, 
and J. R. Wang, "Quantifying spatial and temporal variabilities of microwave brightness 
temperature over the U.S. Southern Great Plains," Int. J. Remote Sens,., vol. 8, no. 2, 
pp. 177-191, 1987. 

M. Owe, A. Chang, and R. E. Golus, "Estimating surface moisture from satellite 
microwave measurements and a satellite derived vegetation index," Remote Sens. 
Environ., vol. 24, pp. 331-345, 1988. 

R. W. Newton and J.W. Rouse, Jr., "Microwave radiometer measurements of soil 
moisture content," JEEE Trans. Antennas and Pro~ae., vol. AP-28, pp. 680-686, 1980. 

J. R. Wang, J. C. Shiue, and J. E. McMurtrey, "Microwave remote sensing of soil 
moisture content over bare and vegetated fields," Geouhys. Res. Letters, vol. 7, no. 10, 
p ~ .  801-804, 1980. 

H. K. Burke and T. J. Schmugge, "Effects of varying soil moisture contents and 
i. Remote Sensi vegetation canopies on microwave emissions," IEEE Trans. Geosc ng, vol. 

20, no. 3, pp. 268-274, 1982. 



S. W. Theis and A. L. Blanchard, "The effect of measurement error and confusion from 
vegetation on passive microwave estimates of soil moisture," J. Remote S w ,  vol. 
9, no. 2, pp. 333-340, 1988. 

F. T. Ulaby, M. Razani, and M. C. Dobson, "Effects of vegetation cover on the 
microwave sensitivity to soil moisture," BEE Trans. Geosci. Remote Senaofi, vol. 21, 
no. 1, pp. 51-61, 1983. 

C. M. U. Neale, M. J. McFarland, and K. Chang, "Land surface type classification 
using microwave brightness temperatures from the Special Sensor Microwave/Imager," 
IEEE Trans. Gwsci. Remote Sensing, vol. 28, no. 5, pp. 829-838, 1990. 

G. H. Hargreaves, and Z. A. Samani, "Reference crop evapotranspiration from 
temperature," Am. Soc. A~ric. Ene. vol. 1, no. 2, pp. 96-99, 1985. 

Soil conservation Service, "Land resource regions and major land areas of The United 
States," United State Department of Agriculture, SCS, Washington, DC, 1981. 

M. J. McFarland, I. R. McCann, and K. S. Kline, "Synthesis and measurement of 
temperature for insect models," ,4SAE M o e ,  St. Josephs, MI, 1991. 

F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and 
Passive. Volumes I. 11. and 111, Reading, MA: Addison-Wesley, 1981, 1982, and 1986. 

M. T. Hallikainen, F. T. Ulaby, M. C. Dobson, M. A. El-Rayes, and L. K. Wu, 
"Microwave dielectric behavior of wet soil - part 1: empirical models and experimental 
observations," IEEE Trans. Geosci. Remote Sensing, vol. 23, no. 1, pp. 25-34, 1985. 



9.4 SNOW PARAMETER ALGORITHMS 

9.4.1 Algorithm Develo~ment Rationale 

Passive microwave radiometry has significant promise for the remote sensing of 
snowpack properties. Snow particles behave as volume scatterers of the radiation emitted from 
the underlying surface [I], [2]. The scattering is a strong function of wavelength. At 
wavelengths less than 1 cm, Mie scattering by individual snow particles such as crystals and 
grains is pronounced 131. The longer wavelengths, such as the 1.66 cm (18 GHz) of the 
Nimbus 7 SMMR and the 1.55 cm (19 GHz) of the SSMII, are scattered less by a typical 
snowpack. Consequently, radiation at these wavelengths emitted from a snow covered surface 
will be a function of the state of the surface beneath the snowpack. Frozen ground has a high 
emissivity, greater than 0.90, due to the low permittivity of ice [4]. Moist soil with free water 
present has an emissivity as low as 0.70 at these wavelengths due to the high permittivity of 
liquid water [5]. The physical temperature of a dry snowpack is not a major influence due to 
the low contribution of emitted radiation from the snow [a. In reality, the passive microwave 
radiation received from a snowpack is a function of the frequency distribution of snow crystal 
and grain sizes. This frequency distribution is highly correlated with snow depth and with snow 
water content for typical snow densities. 

Frozen ground prior to a snowfall event will have fairly similar brightness temperatures, 
with low polarization differences, at the SSMII frequencies. Vegetation and roughness elements 
will decrease the polarization differences, while bak and moist soil will increasethe polarization 
differences. The primary effect of a new, dry snowfall will be to depress the brightness 
temperatures in the shorter wavelengths (higher frequencies). If the snow crystals are very 
small, the 85 GHz channels will show a marked drop in brightness temperature. Pronounced 
decreases in the 37 GHz channels are more typical of a new snow. The polarization differences 
will also increase dramatically. For new, dry snow of the order of tens of centimeters depth, 
the brightness temperatures in the longer wavelengths are essentially unchanged from those prior 
to the snowfall. 

The crystalline structure of a new snowpack initially is influenced by snow crystal size, 
dryness, temperature, and wind. The crystalline structure will change on a day to day basis as 
a result of thermal gradients in the snowpack and the energy balance of the snow surface layer. 
A net effect of both processes - hoar crystal formation in the lower layer of the snowpack [7], 
[8] and larger grain sizes and layer formation from thaw and freeze cycles - is to progressively 
increase the mean crystal size. This will produce a further decrease in brightness temperatures 
at 37 GHz (see, for example, [9]). Large crystals will decrease the radiation at the 22 and 19 
GHz frequencies, as will be shown. 

Snow edge is relatively easy to detect with passive microwave. The radiation from the 
underlying surface is scattered more at 0.81 cm than at 1.55 or 1.66 cm. The polarization 
difference increases markedly at 0.81 cm. Grody [lo], Kunzi, et al. [Ill, and McFarland, et 
al. [9] used comparisons of 0.81 cm with 1.66 cm brightness temperatures or polarization 



difference at 0.81 cm to detect snow edge or discriminate snow covered areas from areas without 
snow with SMMR data. The threshold was of the order of 2 cm snow depth, although others 
have noted a threshold of 5 cm [12]. 

Investigations on determination of snow depth or snow water equivalent have focused on 
the 37 GHz channels [9], [Ill, [12], [13]. Foster, et al. [3] reported coefficients of 
determination approaching 0.9 at the 0.81 cm wavelength (37 GHz) of the Nimbus 6 ESMR. 
These correlations were obtained with the vertically polarized brightness temperatures for one 
degree latitude-longitude cells in North Dakota and Montana. Chang [14] used the difference 
between the 1.66 (18 GHz) and 0.81 cm horizontally polarized brightness temperatures of 
SMMR to retrieve snow depths over several large open land areas in Canada, the U. S. Great 
Plains, and central Russia. Correlation coefficients of 0.85 were obtained. Gloersen, et al. [12] 
retrieved snow water equivalent as a linear function of the brightness temperature difference 
between the 1.66 and 0.81 horizontally polarized brightness temperatures from SMMR. 
Goodison, et al. [15] found excellent correlations between snow depth and the 37V channel of 
an airborne radiometer, with the ground truth from airborne gamma and surface snow surveys. 
The coefficient of determination was 0.86 and the slope of the linear regression line was 1.83 
mmIK. 

Kunzi, et al. [Ill noted that microwave signature of a snowpack was independent of 
depth for dry snow depths greater than 50 cm. McFarland, et al. [9], in their study of snow 
depths in the northern Great Plains, found the upper threshold to be somewhat lower, around 
40 cm. This upper threshold apparently marks the depth where all emitted radiation from the 
underlying surface is scattered or absorbed. For the snow depths above the threshold, the 
radiation is a function of the crystal morphology in the pack and reflected radiation from the 
crystals and internal layers. 

Ideally, the brightness temperatures before the first snowfall would be incorporated into 
the algorithm to retrieve the snow depth or water equivalent [6]. The decrease in microwave 
emission due to snow would be a result of the scattering. The algorithms that combine the 37 
GHz channels with lower frequency channels represent an attempt to incorporate the pre-snow 
passive microwave signature into the algorithm. This procedure would be especially useful with 
varying vegetation, soil, and soil moisture within a region. This procedure is not feasible in the 
D-matrix algorithm approach, however. Incorporation of a longer wavelength (lower frequency) 
in the snow depth or water equivalent algorithm could provide information on the state of the 
ground underlying the snowpack [14]. 

Any liquid water in the snowpack increases the microwave brightness temperatures [I], 
[14]. A change of one percent in liquid water results in a change of 70 K in the 0.81 cm 
horizontal polarization brightness temperature [4]. 

McFarland, et al. [9] separated the snow season into two phases; the accumulation phase 
and the ripening and melting phase. Schanda, et al. [16] had essentially the same classification 
scheme with winter snow (no melting metamorphism), wet spring snow (with a layer of wet 



snow crystals at the surface), and dry, refrozen spring snow. The brightness temperatures and 
the polarization differences do not have the same patterns after the onset of crystal 
metamorphism produced by melting. Daytime melting produces marked increases in brightness 
temperature 191, 117). Nightime refreezing after a daytime melt does not return the brightness 
temperatures to pre-melt values. McFarland, et al. [9] noted a gradual increase in the nighttime 
brightness temperatures from the onset of the ripening and melting phase to fall ripeness and 
melting. The obvious implication is that an algorithm to retrieve the snowpack parameters has 
to initially discriminate between these phases or classes. Different algorithms are needed: one 
to determine snow depth or water equivalent before the melt phase and another to determine the 
stage of ripening. 

The data sets of SSWI brightness temperatures and climatological data were assembled 
as 0.25 or 0.5 degree grid files previously described. The climatological data consisted of 
snowfall in the preceding 24 hours, total snow depth, and water equivalent of the new snow. 
Daily air maximum and minimum temperatures were also available. 

Several separate data sets were analyzed. The full data set consisted of the SSWI 
brightness temperatures from day 343, 1989 to day 60, 1990 for the Central Plains test areas for 
quarter degree grid boxes. The cases analyzed included those overpasses, both ascending and 
descending, when the test area was largely covered by the overpass. The SSMII data set 
consisted of 344a, 344d, 346d, 353d, 363d, 007a, 008a, 024a, 047a, 049a, 050a, 055a, 056a, 
057a, and 058a, where each overpass is identified by the calendar day number and a for 
ascending or d for descending. Only those grid boxes with a climatological reporting station 
were included in the analysis. Additional data sets were processed from February 1988. 

9.4.3 Results and Discussion 

The snow depths and the microwave brightness temperatures are highly correlated, as 
shown in Figures 9.26 through 9.29. Figure 9.26 shows the reported snow depths and Figures 
9.27,9.28, and 9.29 the SSMII brightness temperatures at 19V, 37V, and 85V GHz respectively 
over the Central Plains for day 51, 1988, ascending pass. Figure 9.30 shows the minimum 
surface air temperature for this same day. A visual correlation of the snow depth with the 
brightness temperatures appears to show excellent agreement. However, when multiple linear 
regression was performed, the best R squared was in the vicinity of 0.20 with an RMSE of 11 
cm. The snow depths for this case generally match the observed depressions in the SSMII 
channels, but the localized nature of the heavier amounts may be a source of variance. A 
geolocation correction was not applied to the SSMII data. 

The fall data set was analyzed spatially and temporally for two separate sections of the 
Central Plains, as shown in Figure 9.31. The eastern area was defined by 41 to 47 degrees 
north latitude and 88 to 96 degrees west longitude. This area covers Iowa, Minnesota, and the 



Figure 9.26 Accumulated snow Figure 9.27 SSM/I brightness 
depth for the Central Plains on temperatures at 19V over the 
day 51, 1988. Central Plains on day 51, 1988. 

Figure 9.28 SSM/I brightness Figure 9.29 SSM/I brightness 
temperatures at 37V over the temperatures at 85V over the 
Central Plains on day 51, 1988. Central Plains on day 51, 1988. 
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Figure 9.30 Observed surface Figure 9.31 The test area for 
minimum air temperature for the the analysis of snow. 
Central Plains for day 51, 
1988. 

western half of Wisconsin. The western area was defined by 41 to 47 degrees north latitude and 
96 to 104 degrees west longitude. This area includes North Dakota, South Dakota, and the 
northern two-thirds of Nebraska. Spatial data sets were organized in a spread sheet by day, with 
all seven brightness temperatures, the major land resource area [18], the classification by the 
EXTLND surface type classification module, and the climatological data. The first step in the 
analysis was to calculate the correlation coefficient matrix for all variables. This correlation 
analysis included several derived variables from the brightness temperatures, such as channel 
and polarization differences. Separate correlations were calculated for various categories of 
snow depth, major land resource area, and location. 

The snow season for the winter of 1989 in the test area was characterized by a few major 
snowfalls that meltedlsublimed significantly in the several week periods between the snowfalls. 
The snow cover reported in the Weekly Weather and Crop Bulletin showed very little snow on 
January 16, 1989 and again on February 12, 1990. 

Figures 9.32 and 9.33 show the correlation coefficients between the 19V and 37V 
brightness temperatures and snow depth for days between 344, 1989 and day 58,1990. All grid 
cells with snow depths greater than 0 mm and less than 400 mm were used in the correlation 
analysis. No stratification was done for land surface type and no points were removed based 
on obvious outlier locations, such as the Black Hills of South Dakota. Several patterns are 
readily apparent. The 37V channel has the higher correlation coefficient than the 19V channel, 
but the 19V channel shows a marked response to snow depth (actually grain size characteristics 
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within the snowpack). This indicates that the 19V channel will not necessarily provide 
information from the surface beneath the snowpack. The 19V channel will provide information 
on the aging of the snowpack and the development of larger crystals in response to surface 
thawing and refreezing and to hoar crystal formation in response to thermal gradients. 

Another pattern is that the correlation coefficients are highly erratic with conditions of 
light and decreasing snow amounts. Correlation coefficients that remained fairly stable from day 
to day did not occur until late February. For days 047, 050, 055, 056, 057, and 058 which 
were all ascending overpasses, correlation coefficients were calculated between snow depth in 
mm and the 37V brightness temperature in K for all grid cells with the land surface category of 
snow present (EXTLND). These correlation coefficients ranged from -0.50 to -0.84. The 
correlation coefficients were higher for the eastern test area, although the regression coefficients 
were similar. Selected scatter plots and descriptive statistics are presented in Figures 9.34 
through 9.37. The 85V channel is considered unreliable in these data sets due to the high 
standard deviations and the means less than those of the 85H channel. In Figures 9.34 and 9.35 
for the western test area, the maximum snow depths in the data set were less than 400 mm and 
the relationships between snow depth and the 37V brightness temperature were fairly linear. In 
contrast, note the relationship between snow depths greater than about 400 mm and the 37V 
brightness temperatures in Figures 9.36 and 9.37 for the eastern test area. As noted in previous 
investigations, the passive microwave response is significantly decreased with snow depths 
greater than about 400 mm. 

As shown by the statistics in Tables 9.51 through 9.54, which correspond to Figures 9.34 
through 9.37, the correlation coefficients were high for all channels, which is expected due to 
the high intercorrelations between the channels (excluding the 85V). The 37V channel was 
consistently a better predictor of snow depth, which is consistent with several other 
investigations. Several combinations of channels were also examined. These included the 
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Figure 9.34 37V GHz brightness temperature and reported snow 
depth for the western test area, day 47, 1990, ascending pass. 
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Figure 9.35 37V GHz brightness temperature and reported snow 
depth for the western test area, day 58, 1990, ascending pass. 
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Figure 9.36 37V GHz brightness temperature and reported snow 
depth for the eastern test area, day 50, 1990, ascending pass. 
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Figure 9.37 37V GHz brightness temperature and reported snow 
depth for the eastern test area, day 58, 1990, ascending pass. 



TABLE 9.51 RELEVANT STATISTICS BETWEEN SSMII BRIGHTNESS 
TEMPERATURES AND REPORTED SNOW DEPTH FOR THE WESTERN 
TEST AREA, DAY 47, 1990, ASCENDING PASS 

D e s c r i p t i v e  stat ist ics i n  d b l  p r e c i s i o n  
Nunmber of  Cases = 126 

l a t  
Ion 

t l 9 v  
t l 9 h  
t 22v  
t 37v  
t 37h  
t 85v  
t 85h  

s u r f t  
mlra 
snwd 
snow ----- ----- 

css /pc:  
b a s i c  
stats -- -------- 
std.mode 

Correla  
Number 
(MD pa i  -------- 

l a t  -------- 
1.0000 -. 0909 
-.7957 -. 7492 
-.7946 
-.6969 
-.6618 

-1127 
-.3936 -- 
-.3210 

.5189 

.3040 . - - - - - - - 

.on5 r ( x , y )  
Cases = 126 

rise d e l e t  
'+- .------- 

Ion . - - - - - - - 
-.0909 
1.0000 

.I624 

.2784 

.I559 

.2714 

.3610 
,1565 
.2602 -- 

-.4363 
-.3768 -. 1293 .------- 

l a t  
Ion 

t l 9 v  
t l 9 h  
t 2 2 v  
t 37v  
t 37h  
t 85v  
t 85h  

s u r f t  
mlra 
snwd 
snow . - - - - - - - - - 

css /pc :  
b a s i c  
s t a t s  

Correla  
N. of  C 
(MD pa l  - - - - - - - - 

t 37h  -------- 
l a t  
Ion 

t l 9 v  
t l 9 h  
t 22v  
t37v  
t 37h  
t 85v  - ~ ~ 

t8Sh 
s u r f t  
mlra 
snwd 
snow .--------- 



TABLE 9.52 RELEVANT STATISTICS BETWEEN SSMJI BRIGHTNESS 
TEMPERATURES AND REPORTED SNOW DEPTH FOR THE WESTERN 
TEST AREA, DAY 58, 1990, ASCENDING PASS 

l a t  
Ion 

t l 9 v  
t l 9 h  
t 22v  
t 37v  
t37h  
t 85v  
t 85h  

s u r f t  
m l r a  
snwd 
snow 

css /pc :  
b a s i c  
s tats 

l a t  
Ion  

t l 9 v  
t l 9 h  
t 22v  
t 37v  
t 37h  
t 85v  
t 8 5 h  

s u r f t  
mlra 
snwd 
snow 

Cor r e l a  
Number 
(m psi 

ons  r ( x , y )  
Cases = 73 

rise d e l e t e d )  
- -+ - - - - - - - -+ - - - - - - - -  

Ion 1 t l 9 v  1 t l 9 h  
,-------+--------+-------- 

.3627 i -.2450 I -.3137 
1.0000 .6542 .5039 

.6542 I 1.0000 I .9583 

.SO39 .9583 1.0000 

.6252 .9780 I -9548 

.4815 I .8796 .a721 
I .9229 .4291 .a954 

.I713 .0858 .0900 

.3745 .6451 .6589 -- -- -- 
-.5641 I -.0668 I .0764 
-.3523 I -.6445 I -.6413 
-.I106 1 -.I865 -.I752 
.-------+--------+-------- 

I css /pc:  C o r r e l a t i o n s  r ( x , y )  1 b a s i c  I Number of  Cases = 73 . s t a t s  ! IMD o a i r w i s e  d e l e t e d )  

l a t  1 -.3546 
Ion  .4291 

t l 9 v  .8954 
t l 9 h  .9229 
t 22v  .9290 
t 37v  I .9848 
t 37h  1.0000 
t 85v  .I202 
t85h  I .7850 

s u r f t  -- 
m l r a  .2220 
snwd -.6755 
snow 1 -.0968 



TABLE 9.53 RELEVANT STATISTICS BETWEEN SSMII BRIGHTNESS 
TEMPERATURES AND REPORTED SNOW DEPTH FOR THE EASTERN 
TEST AREA, DAY 50, 1990, ASCENDING PASS 

css/pc: 
bas i c  
s t a t s  

Descript ive s t a t i s t i c s  i n  d b l  p rec i s ion  
Nunmber of Cases = 131 
(MD pa i rwise  de le t ed )  

.---+---------+---------+---------+--------+--------- 
 ax I Mean i ~ t d . ~ r r i  Std.Dev, 

-+--- - - - - - -+--- - - - - -+--- - - - - - -  
l a t  
ion 

t l 9 v  
t l 9 h  
t22v 
t37v 
t37h 
t85v 
t85h 

a u r f t  
mlra 
snwd 
snow 

,--------. 

CSS/PC: 
bas i c  
s t a t s  
,--------. 

a id .  mode 
, - - - - - - - - . 

l a t  
Ion 

t l 9 v  
t l 9 h  
t22v 
t37v 
t37h 
t85v 
t85h 

s u r f t  
mlra 
snwd 
snow --------. 

c o r r e l a t i o n s  r ( x , y )  
Number of Cases = 131 
(MD pairwise de le t ed )  .+- 

I 
I .+- 

l a t  ! Ion 
.------- + -------- 

css lpc :  Corre la t ions  r ( x , y )  
bas i c  1 Number of Cases = 131 
s t a t s  1 (MD p a i n  
- + - - - - - - - - + .  

tise d e l e  .+, 
I 

bed) 
--------+--------+-------- 

t85h I s u r f t  I mlra 
--------+--------+-------- 

snwd -------- 
-.3102 

t l 9 v  .8685 
t l 9 h  1 .9577 
t22v .9012 
t37v .9851 
t37h ] 1.0000 
t85v .0160 
t85h 1 .8092 

s u r f t  -- 
mlra I -.0449 
snwd ! -.a245 
snow 1 .3836 

---------+-------- 



TABLE 9.54 RELEVANT STATISTICS BETWEEN SSMII BRIGHTNESS 
TEMPERATURES AND REPORTED SNOW DEPTH FOR THE EASTERN 
TEST AREA, DAY 58, 1990, ASCENDING PASS 
+----------+----------------------------------------------------- 

css/pc: ' Descript ive statist ics i n  dhl  p rec i s ion  I bas ic  I N u d e r  of cases = 130 ! stats 1 (MD pai rwise  de le t ed )  
+----------+----+---------+---------+---------+--------+--------- 
I N 1 Min 1 Max ! Mean ! Std.Err1 Std.Dev. +----------+----+---------+---------+---------+--------+--------- 
I 

+----------+-----+---------+---------+------Ã‘Ã‘+--Ã‘Ã‘---+---- 

i Y )  
= 130 
e t e d )  

i 1st 
Ion 

t l 9 v  
t l 9 h  1 t22v 

I t37v 

I t37h 

I t85v 
t85h 

1 s u r f t  I 
I mlra 

I snwd 
I snow + - - - - - - - - - . 

i 
I 
I ,-------+--------+ 

mlra 1 snwd 
,-------+--------+ 

.0437 ' .7985 

.6871 .0784 

.I146 -.a436 
-.0028 -.6990 I 

I .I245 -.a192 
.lo01 I -.7259 
.0510 I -.6870 1 I -.0281 ' -.0486 
.lo73 -.3911 -- I -- 

1.0000 I -.0135 1 
-.0135 1.0000 I 

.I567 .3407 

Corre la t ions  r ( x , y )  
Number of Cases = 130 
(MD pairwise del  

+ -------- 
t37h 1 t85v 

,-------+-------- 
-.6393 1 -.0667 
-.0967 .0469 

.SO90 I .0441 

.9258 .0462 

.a653 .0719 

.9880 .0450 
1.0000 .0416 

.0416 1.0000 

.7578 .0087 -- -- 

.0510 I -.0281 I -.6870 I -.0486 
-.I280 1 .0792 
.-------+-------- 

i l a t  

I Ion 

I t l 9 v  
t l 9 h  1 t22v 

I t37v 

I t37h 

I t85v 
t85h 

1 s u r f t  ! mira 



polarization difference in the 37 GHz channels and the difference between the 19V and 37V 
channels. The 37 GHz polarization difference was a poor predictor, with correlation coefficients 
for all data sets less than 0.50. The correlation coefficients between the 19V and 37V channel 
difference term and snow depth were generally in the range 0.55 to 0.75, which were about 0.15 
lower than those of the 37V channel. On the few occasions when the correlation coefficients 
were higher, the interchannel correlation coefficient was also high. This indicated that no new 
information was available from the 19V channel. Based on these complete analyses, with 
analyses of partial data sets from February, 1989, the conclusion is that the use of a single 
channel, the 37V brightness temperature, provides the highest correlation coefficient of any 
SSMII channel or channel combination. 

The results for the 37V regression with snow depth for all grid cells were: 

IkSuLCa a Jntercewt %!E 
East 614 246.8 -0.0488 
West 609 248.4 -0.0625 

The regression equation for this combined data set is: 

37V (K) = 247.6 -&.557*SD (mm) 

9.4.4 Recommendations 

It was not possible to construct an algorithm which is suited for automatic determination 
of snow depth or snow water equivalent under all snow conditions. The interpretation of the 
algorithm predictions should be conducted, with previous data, other sources of data, and a 
knowledge of the areas of concern. However if the snowpack is known to be dry, that is 
classified as dry snow by the surface type identifier (see Section 9.1), the snow depth may be 
extracted with a high degree of accuracy with a single channel algorithm based on the 37V GHz 
brightness temperature. The snow depth (SD) algorithm, in millimeters, is the inverse of the 
regression equation determined in Section 9.4.3 and is given in Table 9.55. 

TABLE 9.55 RECOMMENDED SNOW DEPTH RETRIEVAL ALGORITHM FOR 
DRY SNOW 
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10.0 SEA ICE VALIDATION 

10.1 INTRODUCTION 

The validation of the Special Sensor MicrowaveIImager (SSMII) for sea-ice parameters 
was carried out by the Atmospheric Environment Service (AES), Environment Canada on data 
collected from June 1987 to September 1988. The objective of the validation project was to 
determine the accuracy of the Hughes Aircraft Company (HAC) sea ice algorithm' and the 
AESIYORK algorithm for total sea-ice concentration, ice age (i.e., first year or multi-year ice), 
ice type fractions, and the location of the ice edge. The aim was to see if these retrieved 
parameters could be predicted within the specifications given in Table 10.1 and, if retrieval 
parameters fail to meet the specifications, to determine, if possible, corrections needed to bring 
the parameters within specifications. A description of the HAC and AESIYork algorithms is 
presented in Appendix 10A. 

The performance was to be assessed for all seasons and in different geographic areas. In 
this project, four seasons were identified; ice formation (freeze-up), winter, initial melt, and 
advanced melt. The difference between the two stages of melt is the presence of snow cover 
during initial melt. 

The validation also included the operational demonstration of the HAC and AESIYORK 
algorithms for ice reconnaissance and forecasting, which was carried out at the AES Ice Branch 
in Ottawa and at the U.S. NavyINOAA Joint Ice Center in Washington, D.C. 

The validation of the two algorithms for the three ice parameters involved the comparison 
of map products produced by the algorithms with airborne radar imagery flown over the same 
area as close in time as possible to the satellite overpass. This was no trivial task, because the 
radar imagery had to be obtained from AES ice reconnaissance aircraft which have operational 
constraints on the timing and location of flights. Therefore, the number of successful events, that 
is, where airborne radar imagery is collected within six hours of an SSM/I orbit and over a large 
enough area to match the SSWI orbit, was only a fraction of the total planned events. 
Nevertheless, a sufficient number of events and numbers of validated SSWI footprints were 
available to perform a statistical comparison for total ice concentration and ice edge location. 
There were insufficient ice fraction samples available to undertake any statistical analysis; only 
some trends in the data can be reported. Altogether 1.6 million sq krn were validated for total 
ice concentration, and more than 6000 km were validated for ice edge position. 

The sea ice validation program required that the overall accuracy of the ice parameters 
(regardless of geographic location, total ice concentration, or season) be determined. This 

'Hughes Aircraft Company developed the sea ice algorithm and associated ground software 
used at FNOC and AFGWC to process the SSMII data. 
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objective was achieved in this project by pooling all the data together as a combined areas data 
set. 

TABLE 10.1 

ICE AND WIND PARAMETER REQUIREMENTS FOR SSMII VALIDATION 

Parameter Geometric Range of Values Quantization Validation 
Resolution (km) Levels Criteria 

(a) HAC Algorithm 

Ice 
Concentration 25 0 to 100% 5 
Age 50 first-year 1 Yr 

multi-year 
Edge location 25 presentlabsent NIA 

>1 yr 

QXa 
Surface Wind 
Speed 25 3 to 25 

*lo% 
none 
none 
Â 12.5 km 

(b) AESIYORK Algorithm 

Ice 
Concentration 25 0 to 100% 7 Â±lo 
Age 25 Fractions of 

0-100% first-year 1 yr Â 10% 
old ice > 1 yr +lo% 

Edge location 25 presentlabsent NIA k12.5 km 

QaM 
Surface Wind 
Speed 25 3-4Omis 1 *2 mis 

Because ice properties, ice concentrations and combinations of ice types differ between 
geographic areas and times of year, the performance of the algorithms were examined as a 
function of these parameters. Passive microwave sensors are sensitive to the amount of free 
water content in the overlying snow, a parameter that varies with season. 

The validation project also examined algorithm performance over intervals of ice 
concentration as well as for different geographic areas and seasons. The statistical criteria for 
whether or not an algorithm met the originally defined criteria were more rigorously defined as 
follows: 



1. The algorithm is judged successful if the average difference in total ice 
concentration was within Â 12% (HAC algorithm) or Â±lo (AESIYORK 
algorithm) as well as at the 95% confidence interval. 

2. The algorithm is marginal if the average difference in total ice concentration was 
within Â±12 (Â±lo%) but was greater than Â±12 (Â±lo% at the 95% 
confidence interval. 

3. The algorithm failed if the average difference in total ice concentration was 
greater than Â±12 (Â±lo%) 

The same criteria were used to judge the algorithm performance for ice edge location, with a 
limit of + 12.5 kin. Evaluation was not performed for ice fraction because of insufficient data. 

The validation team felt that it was important to study the performance of each algorithm 
over intervals of ice concentrations as well as combining all the data. Sea-ice concentrations 
occur at 0-10% and 90-100% in many areas for lengthy periods of the year; however, during 
periods of break-up, movement and formation, ice concentrations vary widely and can change 
quickly. It is important to know how well the algorithms perform at intermediate concentrations, 
and to determine if the performance is consistent or varies as a function of concentration 
interval. The interval selected was lo%, which is the same division used by AES Ice Branch in 
reporting ice conditions. 

The validation was carried out in two geographic regions, the Canadian Arctic and the 
Gulf of St. Lawrence where corroborating airborne radar data were available. In the Arctic, 
most of the validated SSMII footprints were in the Beaufort Sea. A small percentage of the total 
sample (< 10%) was in Northern Baffin Bay, Amundsen Gulf and M'Clure Strait. The Arctic 
data set for total ice concentration comprises slightly more than 80% of the validation samples 
where a sample is a validated SSMII footprint. The validation results for these areas are 
discussed in detail below. 

The performance of the two algorithms was estimated by performing statistical analysis 
of the data set. The statistics used include determining an average difference of all the samples 
combined. This provides an indication of algorithm performance in the real world, but it can be 
biased by the distribution of samples over the range of concentration. To overcome this sampling 
bias, a uniform sampling of the Arctic data set was undertaken. The resulting statistics, e.g. 
mean difference, standard deviation and 95% confidence interval between the algorithm and the 
radar total ice concentrations provides the overall estimate of accuracy. 

The sampling for total ice concentration was biased towards the 0-10% and 90-100% 
concentration bins which made up a large proportion of the samples. Part of the problem was 
that the airborne radar imagery covered areas and time of year where an almost complete ice 
cover was present, e.g., Beaufort Sea in the fall and winter, or where the aircraft flew along or 
adjacent to the ice edge such that one of the two radar swaths imaged mostly open water 



conditions. Figure 10.1 illustrates the distribution of samples for the SSMII algorithm for all 
areas and seasons combined. Over 213 of the samples were either at 0-10% or 90-100% ice 
concentration intervals. The bias was removed using two techniques: 
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Figure 10.1 - Distribution of total ice concentration samples, HAC algorithm. 

1. Examining the mean differences over 10% ice concentration intervals. 

2. Extracting equal numbers of samples over the range of concentrations to produce 
statistics and distributions similar to those for the entire sample population. 

10.2 TOTAL ICE CONCENTRATION RESULTS 

10.2.1 Canadian Arctic 

Using the acceptance criteria, the results of the two algorithms for all data pooled and 
by season are presented in Table 10.2. 



TABLE 10.2 

11 TOTAL ICE CONCENTRATION EVALUATION CRITERIA FOR ARCTIC 

The results are for samples where there was less than 3 h between the radar imagery and 
SSMII overpass. The average difference and standard deviation in concentration between 
algorithm and radar-based estimates for the SSMII and AESIYORK algorithms are presented in 
Figures 10.2 and 10.3. 

20 i b U K < &  I 
Maoaurad Coneentrotkin (Ã§t 

Figure 10.2 - Mean difference and standard Figure 10.3 - Mean difference and standard 
deviation HAC vs radar for total ice deviation AESIYORK vs radar for total ice 
concentration, Arctic, pooled. concentration, Arctic, pooled. 

Both algorithms underpredict total ice concentration across the entire 
concentration range. 

Both algorithms work best at low ice concentrations, less than or equal to 20% 
for HAC, less than or equal to 30% for AESIYORK. 

0 The AESIYORK algorithm performs better at high concentrations (90-100%) 
where the average difference is underpredicted by less than 10%. 

0 Both algorithms significantly underpredict in the middle range of ice 
concentrations. Both exhibit a characteristic "curve" where the underprediction 
increases with increasing ice concentration until it reaches a maximum at 70 to 



90% concentrations for HAC, 50% for AESIYORK. Both algorithms improve for 
the 90-100% interval, but HAC still underpredicts by over 20%. The improved 
performance for 90-100% is still not as good as for the lower concentrations. 

10.2.1 Ice Formation 

For the ice formation phase the results reveal that: 

0 Both algorithms perform successfully within the criteria for the 0-10% ice 
concentration bin but both underpredict for the higher intervals. 

0 For concentrations 20-30% and above (including 90-loo%), the HAC algorithm 
underpredicts well below the 12% acceptance criteria. 

o The AESJYORK algorithm shows the same trend, but begins to underpredict by 
more than 10% at the 40-50% concentration bin. There is improvement at 90- 
100%, similar to the pooled data results. 

0 The underprediction is due to the presence of new ice and the refreezing of old 
ice freshwater meltponds. 

For the winter ice phase the results show that: 

0 Over 90% of the samples are in the 90-100% concentration bin, reflecting the 
typical ice conditions for the Arctic at this time of year. 

0 Both algorithms perform well in cold conditions and at high ice concentrations. 
Their performance in winter is better than any other season. 

0 There were insufficient samples at lower ice concentrations to fully test the 
accuracy of the algorithms. 

10.2.3 Initial Mel . . 1 

For the initial melt phase the results indicate that: 

0 Between 65 and 70% of the samples were at ice concentrations less than or equal 
to 10%. This sampling is not typical of ice conditions in the Arctic at this time 
of year. The data set was limited by the lack of radar coverage of the area 
because the AES aircraft does not cover the area operationally at this time. 



0 No inference can be made about the accuracy of the algorithms at higher ice 
concentrations. More samples are needed at the higher ice concentrations to 
confirm algorithm performance. 

10.2.4 Advanced Melt 

0 There were sufficient samples over the range of wncentration to determine 
overall algorithm performance as well as between ice concentration bins. 

Both algorithms underpredict total ice wncentration for all the concentration bins. 

0 The HAC predicts best for concentrations less than 20%. For all concentration 
bins above 10-20%, including the 90-100% bin, it significantly underpredicts ice 
concentration. This is probably the result of high water coverage on the ice at this 
time of year [I]. 

0 The AESIYORK algorithm shows a similar trend to HAC, except that the 
underprediction is less (by at least 10%) for all concentration bins. 

10.2.5 Gulf of St. Lawrence Regional Results 

The number of samples is considerably less than in the Arctic. Samples were available 
for only two seasons, ice formation and winter. The evaluation criteria applied to the two 
algorithms for this area is summarized in Table 10.3. 

0 More than 80% of the samples are in the 90-100% concentration interval. The 
acceptance criteria can only be applied to this bin because of insufficient data in 
the other bins. 

At high concentrations the HAC algorithm in particular has difficulty predicting 
the of new and thin ice types. 



0 Figures 10.4 and 10.5 present mean difference and standard deviation by 
concentration interval. The variability of the data reflects the low number of 
samples. The following observations may be made: 

Figure 10.4 - Mean difference and standard Figure 10.5 - Mean difference and standard 
deviation HAC vs radar for total ice deviation AESIYORK vs radar for total ice 
concentration, Gulf of St Lawrence, pooled. concentration, Gulf of St Lawrence, pooled. 

10.2.2.1 Ice Formation and Winter 

For the ice formation and winter phases the results indicate that: 

0 The evaluation criteria results are greatly influenced by the high proportion of 
new and thin ice types which the algorithms appear to have difficulty predicting. 

0 The first-year ice in the Gulf is not as thick as that in the Arctic in the winter 
months and, there is a higher percentage of new and thin ice in the matrix. These 
factors contribute to the differences in algorithm performance for the Gulf. 

10.2.2 Uniform a ~ l i n g  

To remove the bias of the total ice concentration pooled data set for the disproportionate 
number of samples in the 0-10% and 90-100% concentration intervals (where both algorithms 
perform better), an equal number of samples from each 10% interval was analyzed statistically. 
The resulting distributions of uniform sampling for the HAC and the AESIYORK algorithms are 
presented in Figures 10.6 and 10.7, respectively. Note that 

0 Both algorithms show degraded performance, with increased mean differences and 
higher standard deviations. 

0 The trend in the differences over the mid-range of concentrations is similar to the 
complete data set (Figures 10.2 to 10.5). The distributions confirm the tendency 



for the algorithms to underpredict total ice concentration particularly in the middle 
concentration ranges. 

0 Using the evaluation criteria for total concentration on the uniform sampling of 
the pooled data set, both algorithms failed. 

Figure 10.6 - Mean difference and standard 
deviation HAC vs radar for total ice 
concentration, Arctic, uniform sampling. 

Figure 10.7 - Mean difference and standard 
deviation, AESIYORK vs radar for total ice 
concentration, Arctic, uniform sampling. 

10.3 ICE EDGE LOCATION RESULTS 

Validation of ice edge was only possible for relatively simple ice edges. Sections of the 
ice edge that were convoluted, consisted of plumes or embayments, or were otherwise complex 
could not be validated because there was no consistent way to make measurements between the 
radar and the algorithm ice edge locations. This difficulty reduced the number of samples 
available for subsequent statistical analysis. 

During the ice formation and winter seasons ice edge comparisons were further 
complicated by the presence and formation of new ice. Ice edge measurements were made only 
where no ambiguity existed in interpreting new or thin ice in the radar imagery. However, the 
time between the radar coverage and the SSWI overpass was critical because the two sensors 
may detect different distributions of the edge simply because of new ice growth. These factors 
reduced the length of ice edge available for comparison of the radar and SSWI. 

Almost 90% of ice edge measurements were made for the Beaufort Sea data. The 
distribution of ice edge displacements for the combined areas provide a representative and 
consistent measure of algorithm performance. 

The distribution of ice edge measurements for the HAC algorithm (Figure 10.8) shows 
a tendency to underpredict the ice edge location. The samples are skewed into the ice with a 
mean difference between -11 and -20 km (bin no. -1). 



Figure 10.8 - Distribution of ice edge differences, HAC vs radar 
for all areas combined. 

The ice edge displacement results for the AESIYORK algorithm are presented in Figure 
10.9. More than 90% of the samples fall within Â±2 km of the ice edge as derived from 
airborne radar imagery. The samples are uniformly distributed about the ice edge location, with 
positive displacements representing edge locations beyond the ice edge and negative 
displacements indicating ice edge locations within the ice. 

Tables 10.4 and 10.5 summarize the evaluation criteria for ice edge location for the two 
algorithms for the Arctic and Gulf of St. Lawrence respectively. 

I1 TABLE 10.4 

ICE EDGE EVALUATION CRITERIA FOR CANADIAN ARCTIC 

Algorithm Pooled Ice Formation Initial Melt Advanced Melt 

HAC Failed Marginal Failed Failed 

AESIYORK 1 Successful 1 Successful 1 Successful 



Figure 10.9 - Distribution of ice edge differences, ABSIYORK vs radar 
for all areas combined. 

1 -  - 

TABLE 10.5 

11 ICE EDGE EVALUATION CRITERIAL FOR GULF OF ST. LAWRENCE 

Pooled I Ice Formation 

Marginal 

10.4 ICE FRACTION RESULTS 

The validation of ice fraction was not possible because of the low number of samples. 
Consequently no statistical analysis was undertaken. Of the total sample population, only 10% 
were at high old ice concentrations (81-100%) because of the scarcity of coincident airborne 
radar coverage for such areas. 

The HAC algorithm does not produce an old ice concentration; it reports old ice if the 
concentration is above 35%. Therefore the validation of the HAC algorithm for ice fraction was 
really a question of whether or not it reliably reports old ice when its fraction is above 35%. 



The only trends apparent were that for the AESIYORK algorithm, it was underestimating 
the old ice fraction for the limited number of samples available, and for old ice concentrations 
above 8074, the HAC algorithm flagged old ice in about half of the samples. 

10.5 ADDITIONAL RESULTS 

There were additional shortcomings with the HAC algorithm which are not apparent in 
the statistical results concerning adverse weather conditions and the ice edge contour. There were 
areas occasionally shown by the algorithm as ice covered where no ice should be present. An 
example in the Labrador Sea, is shown on the left in Figure 10.10, where ice along the coast 
was extended by the HAC algorithm into an apparent ice cover all the way to the west 
Greenland coast. The problem could be eliminated by a suitable weather filter algorithm, as is 
incorporated in the AESIYORK algorithm, and illustrated on the right in Figure 10.10. 

The appropriateness of the 30% HAC ice edge contour as the one to define ice edge is 
questioned because of high ice concentrations observed along it. The ice edge (or 0% ice 
concentration contour) as determined on the radar imagery corresponded to a HAC algorithm 
ice concentration of between 25 and 50%, with an average of 35 % ice concentration, depending 
on the ice types present. The 30% HAC algorithm ice contour was observed to correspond to 
an average ice concentration of 56%. In comparison, the AESIYORK algorithm at the 0% radar 
ice concentration contour corresponded to an ice concentration of between 0 and 25 %, with an 
average ice concentration of 16%, depending on ice type and the 10% AESIYORK algorithm 
ice edge corresponded to an average ice concentration of 25%. 

The HAC algorithm was designed to flag the presence of old ice only when 
concentrations reached 35% or more of the total ice concentration. Because it only flags, but 
does not determine the ice fraction concentration, its usefulness is reduced for operational 
purposes. The AESIYORK algorithm is designed to provide open water, first-year, and old ice 
fractions. It also allows retrieval of the ocean surface wind speeds, cloud cover, precipitation, 
and water vapor for ice-free areas. 

o The AESIYORK algorithm is recommended for operational use. It is superior to 
the HAC algorithm for total ice concentration estimates and ice edge location for 
the geographic areas and seasons validated in this project. AESIYORK also 
produces more specific estimates of old ice concentration. 

It is recommended that a tailored or reduced version of the AESIYORK algorithm be 
implemented for operational use. See Appendix A for a description of the complete AESIYORK 
algorithm. This tailoring is necessary for two major reasons. First, the AESIYORK was 
constructed to retrieve not only the basic SSMII parameter of sea ice concentration and identify 
first-year and multi-year ice types but also additional parameters such as the fractions of first- 
year, multi-year, and thin ice within the SSMII footprint as well as ocean surface wind speed 
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Figure 10.10 SSMII sea ice concentration retrieved from HAC and AESIYORK algorithms. 



and vertical columns of water vapor and liquid cloud water. Second, the computer resources 
required to implement the complete AESIYORK algorithm are significantly greater than the 
proposed tailored version. The error in the retrieved sea ice concentration using the tailored 
AESIYORK algorithm is essentially that associated with the complete algorithm and as discussed 
earlier is typically less than 10-12%. 

10.6.1 Recommended Sea Ice Aleorithm 

Figure 10.11 presents a flow chart of the reduced version of the AESIYORK sea ice 
algorithm. Specific equations and decision tests employed in the algorithm are presented in 
Table 10.6 and the ocean regions where sea ice is possible and the algorithm should be 
implemented are given in Table 10.7. The initial test identified in the flow chart, Test 1, checks 
for the reasonableness of the 19V, 19H, 37V, and 37H SDRs and polarization differences 19V- 
19H, 37V-37H. If any of the inequalities in Test 1 of Table 10.6 are true, no sea ice 
concentration or ice type identification is retrieved. If none of these inequalities are true, the 
SDRs are reasonable for open ocean or sea ice and total sea ice concentration, TOTICE, is 
computed either for winterlfall conditions or summerlspring conditions. Equation A in Table 
10.6 is used to compute TOTICE and employs only the 19V and 37V SDRs. Depending on the 
value of TOTICE and several subsequent threshold tests, new values of TOTICE may be com- 
puted. As shown in Figure 10.11, a threshold TC is selected depending on the condition of 
winterlfall or summerlspring. TC is essentially an atmospheric offset threshold used later. The 
next step in the algorithm is to compute a discriminate D which is an estimate of the total ice 
concentration independent of Equation A and is expressed by Equation C in Table 10.6. Test 
2 which follows the computation of D is a consistency check between TOTICE and D. If 
TOTICE and D are both less than or equal to 0.7, additional testing is necessary to determine 
the influence of clouds andlor ocean roughness. These tests are identified as tests, 3, 4, and 5 
in the flow diagram. If TOTICE is greater than 0.7 or in the event the output of these tests 
results in TOTICE being less than or equal to 0.5 and D greater than 0.15 (test 6), then the 
effects of cloud and ocean roughness are unimportant and the algorithm recomputes TOTICE 
using only the 37V and 37H channels with Equation D of Table 10.6. This is done to take 
advantage of the higher resolution of the 37 GHz data and provides greater accuracy in 
determining sea ice edge. (The highest resolution 85 GHz channels are currently not employed 
in sea ice concentration retrievals. Under clear skies and calm ocean surface, the 85 GHz data 
offers the potential for determining sea ice edge to Â± km). In the event clouds or ocean 
roughness is important, the previous value of TOTICE is used. Test 6 is followed by out-of- 
bounds checking of TOTICE and if TOTICE is less than 0.25 no ice type identification is made. 
If TOTICE is greater than or equal to 0.25, the ice type identifier TBI is computed with 
Equation E. If TBI is less than 238, the fraction of ice is predominately multi-year ice. 
Otherwise the fraction is predominately first-year. 
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Figure 10.11 - Recommended sea ice algorithm flow chart. 
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Figure 10.11 - continued. 
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Figure 10.11 - continued. 



TABLE 10.6 
EQUATIONS AND TESTS USED IN RECOMMENDED SEA ICE ALGORITHM 

A. TOTICE = CWF(1) * Tm + CWF(2) * TBlgv + CWF(3) 

TBI = [TBlgV -TC - (1.0 - TOTICE) * 180]/TOTICE 

WCUT = 6.0 

I WCUT = 8.5 

WINTEWALL COEFFICIENTS SUMMER/SPRING COEFFICIENTS 
CWF(1) = -0.013656219 CSS(1) = -0.015231617 
CWF(2) = 0.024412842 CSS(2) = 0.025911011 
CWF(3) = -1.677645 CSS(3) = -1.656920 

2. TOTICE 5 0.7 AND D <: 0.7 
3. D S 0.3 AND [Tm * 1.5 - TBlgV] > 120.0 
4. Taw S 215.0 
5. D 5 0.15 OR [Tn37H - 2 * Tmv + 270.01 S WCUT 
6. TOTICE S 0.5 AND D > 0.15 



TABLE 10.7 

REGIONS WHERE SEA ICE MAY EXIST AND THE RECOMMENDED 
ALGORITHM SHOULD BE IMPLEMENTED 

1. Southern Hemisphere: All ocean regions less than 50s latitude. 

2. Northern Hemisphere: All ocean regions above 65N latitude. 

A. Alaska Area: longitude 165-200E and latitude 50-90N 

B. Gulf of St. Lawrence and Hudson Bay: longitude 240-315E and latitude 42-90N 

C. Sea of Japan and Sea of Okhotsk: longitude 130-155E and latitude 40-90N 

D. Baltic and North Sea: longitude 5-30E and latitude 53-90N 

E. Kamchatka Peninsula: longitude 155-165E and latitude 45- 90N 

F. Iceland: longitude 330-350E and latitude 60-90N 

G. Greenland: longitude 315-330E and latitude 55-90N 

H. White Sea: longitude 30-50E and latitude 63-90N 

I. Yellow Sea: longitude 115-130E and latitude 37-90N 

J. Kodiak Island: longitude 200-210E and latitude 55-90N 

K. Gulf of Alaska. longitude 210-240E and latitude 58-90N 
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ACRONYMS 

ACIF Ice Forecasting Division of AES Ice Branch (Ottawa, Ontario, Canada) 

A E S .  Atmospheric Environment Service (Canadian Department of the Environment) 

AESIPhD algorithm developed by AES and PhD Associates Inc. 

AESIYORK algorithm developed by AES and York University 

AIMR 

DEF 

FNOC 

ICEC 

ISTS 

nc 

NOAA 

NPOC 

NRL 

SAR 

SLAR 

SSMII 

SSMR 

airborne imaging microwave radiometer 

ephemeris data tapes 

Fleet Numeric Oceanographic Center (Monterey, California, U.S.A.) 

Ice Centre, Environment Canada (Ottawa, Ontario, Canada) 

Institute of Space and Terrestrial Science, York University 

Joint (NOAAINAVY) Ice Center (Washington, D.C., U.S.A.) 

U.S. National Oceanic and Atmospheric Administration 

U.S. Naval Polar Oceanographic Center (Washington D.C., U.S.A.) 

Naval Research Laboratory (Washington, D.C., U.S.A.) 

synthetic aperture radar 

side-looking airborne radar 

special sensor microwave/imager 

scanning multichannel microwave radiometer 



APPENDIX 10A 

10A.O DESCRIPTION OF HAC AND COMPLETE AESIYORK SEA ICE ALGORITHMS 

10A. 1 BACKGROUND 

The sea ice algorithm used by the U.S. Navy for the SSMII was developed during the 
1970s by Environmental Research and Technology Inc. under a subcontract from Hughes 
Aircraft Corporation, and was tested during the NIMBUS satellite series of scanning 
multichannel microwave radiometers (SMMR). The HAC algorithm was tested extensively from 
1982 to 1987 by the Ice Research and Development Division of Ice Branch, Atmospheric 
Environment Service (AES) which is part of the Canadian Department of the Environment, for 
both research and operational purposes. To improve the retrieval of ice information in all 
weather conditions and to optimize the use of SMMR channels another algorithm was developed 
(produced under contract to AES by PhD Associates Inc.). Known as the AESIPhD version, it 
also underwent research and operational testing from 1984 to 1987. 

By the time of the SSM/I launch in June 1987, an updated version of the AESIPhD 
algorithm was introduced by AES and the Microwave Group at the Institute of Space and 
Terrestrial Science (ISTS), York University, which is now known as the AESIYORK algorithm. 
This algorithm has been evaluated with the HAC algorithm in this validation program. The 
AESIYORK algorithm incorporates weather and sea state corrections to aid in the retrieval of 
ice type (fraction), ice concentration, and ice edge position for operational ice reconnaissance. 
The Canadian validation program was based on the criteria listed in Table 10.1, and the more 
stringent Canadian criteria for resolution requirement of ice age and total ice concentration were 
applied to the AESIYORK algorithm while the U.S. criteria were applied to the HAC algorithm. 

The Canadian validation program also involved an operational demonstration and 
evaluation project in which both the AES Ice Branch, Ice Forecasting Division (ACIF), and the 
U.S. NavyINOAA Joint Ice Center participated. Both ice centres were given near real-time ice 
charts using the AESIYORK ice algorithm by pulling near real time SSWI data from the Fleet 
Numeric Oceanographic Center (FNOC) in Monterey, California. This was made possible 
through support from the Naval Research Laboratory (NRL). 

Because the AESIYORK ice algorithm uses weather and sea state corrections to enhance 
the retrieved ice parameters, a number of useful side products were obtained for the ice-free 
ocean area, such as wind speed, areas of precipitation, atmospheric water vapor, and cloud 
amount. Six Canadian weather centres participated in an operational demonstration and 
evaluation of these parameters from 20 January to 31 March 1988. The results of this exercise, 
which were very promising, have been published in a report by Ramseier et al. [l] 



10A.2 THEORY 

In the microwave region, the radiation intensity received by a radiometer is proportional 
to the absolute temperature of the medium. This apparent temperature is referred to as brightness 
temperature, TW The attenuation of the surface-emitted radiation and the transmittance of the 
atmosphere are both related to the optical thickness of the atmosphere (c). 

In the absence of scattering, the brightness temperature sensed by a satellite radiometer 
can be represented by [2]: 

where TB = brightness temperature, 
z = satellite location height, 
9 = incidence angle, 
6 = effective surface eniissivity, 
c = total opacity of the atmosphere along the line of sight, 
Ts = surface temperature. 

The quantities Tai and Tm are proportional to the upward and downward emission from the 
atmosphere, respectively, plus attenuated sky background radiation, and can be calculated from: 

where 
c(z) = j g(z)secOdz, 
g(z) = total opacity at height z, representing the sum of the contributions from water 
vapor, oxygen, and liquid water droplets in cloud. 

As the mixing ratio of oxygen is essentially constant and the absorption coefficient is very 
weakly temperature dependent, they contribute to a constant offset in the 1 to 40 GHz region. 
The absorption caused by non-precipitating water droplets in the atmosphere has a linear 
dependence on the amount of liquid water and a quadratic variation with frequency [3]. 



The intensity of the atmospheric radiation can be calculated using results from Swift et 
al., [4]. For the frequencies used in the algorithms validated, some typical values for the opacity 
coefficient and the atmospheric contribution to the observed brightness temperature are presented 
in Table 10A.l 

TABLE 10A. 1 

TYPICAL VALUES FOR THE OPACITY COEFFICIENT (C) AND THE 
ATMOSPHERIC CONTRIBUTION (TBl) TO THE OBSERVED BRIGHTNESS 

TEMPERATURE 

Location 1 Typical Values at 19 GHz 1 Typical values at 37 GHz 

Polar Regions 1 0.025 1 6.7 1 0.049 1 13.0 

Midlatitudes 1 0.050 I 12.5 I 0.100 I 25.0 

The emissivity of different targets is a consequence of their dielectric properties. As 
water is a polar molecule, it has a very large dielectric constant at microwave frequencies which 
results in a large reflectivity (low emissivity) for a liquid water surface such as the ocean. Most 
solid surfaces have emissivities in the range 0.80 to 0.95, so there is a significant contrast 
between liquid water surfaces, such as lakes, rivers, and the oceans, and solid surfaces such as 
land and sea-ice. The low emissivity of the open ocean makes it a good background for viewing 
the intervening atmosphere. 

The higher salinity of first-year ice causes it to be optically opaque and, therefore, its 
microwave signature is almost frequency independent. The virtually de-saliated near surface 
portion of old ice makes it optically thin, i.e., radiation emanates from a thicker layer of old ice. 
A significant part of the radiation from old ice is suppressed by volume scattering within the ice 
because of air pockets formed during summer melt and brine drainage. The brightness 
temperature signature of old ice is, therefore, generally lower than that of first-year ice. As the 
sensitivity to volume scattering is inversely related to the wavelength of the radiation, at higher 
frequencies one would observe larger variability in the brightness temperature of old ice. 

The upwelling brightness temperature of a scene containing open ocean and various 
amounts of sea-ice is a function of the ice concentration, ice emissivity (i.e., ice type), the 
physical temperature of the components, and the amount of water vapor and liquid water in the 
intervening atmosphere. Assuming that the ice cover within the field of view is a mixture of old 
ice and first-year ice, the brightness temperature sensed on the i-th channel of the radiometer 
can be expressed as: 



where 
ci = total atmospheric opacity, 
1C = total ice cover fraction, 
F = fraction of first-year ice, 
M = fraction of old ice, 
ex, em, ewi = surface emissivities of first-year ice, old ice, and sea water, 
Tp, Tu, Tw = surface temperatures of first-year ice, old ice, and open ocean, 
Tnz = incident sky temperature at the surface caused by atmospheric downward 

emission, 
TBI = contribution from atmospheric upward emission. 

From equation 4 it follows that by considering the difference of Tw (from vertical 
channel) and TBH (from horizontal channel) for 37 GHz, one minimizes the contribution from 
the atmosphere: 

This equation was used in developing the HAC algorithm. 

An algorithm that calculates ice concentrations by solving equation 5 for IC, i.e., 
assuming that a possible solution can be of the form: 

where coefficients A and B are calculated from equation 5, after making reasonable assumptions 
about the physical temperatures of the various components and selecting appropriate atmospheric 
parameters. It can be demonstrated that DTB=TBv-Tan decreases with the increase in optical 
ooacitv (because of larger amounts of water vamr and cloud covert and the increase in 
ekssikties of open oc& (because of surface roughness), which implies that an algorithm of 
the tvue described above will vield erroneous ice concentration retrievals. Daiticularlv in weather 

.A . . . . 
where high levels of water vapor in the atmosphere, cloud cover, and wind-roughened seas are 
experienced. To improve on the ice information retrieval reliability for all weather conditions, 



a dual frequency, dual polarization (19, 37 GHz) algorithm was developed and is described in 
Section 10A.3. 

10A.3 HAC ALGORITHM 

The HAC algorithm was derived by using equation 5. The following assumptions were 
used to be able to evaluate 1C from equation 6: the surface temperatures TF=TM=Tw=Ts, 
dtF=dtM=de,. Using simple algebra, the coefficients A and B can be calculated from the 
following: 

Climatological mean values of atmospheric water vapor, liquid water, ice surface temperature, 
and emissivities were used as inputs to evaluate parameters A and B for different climatic zones 
151. 

Determination of ice type is achieved by computing the effective average ice brightness 
temperature within the footprint and comparing it with a preselected value, Tc (e.g., brightness 
temperature of a sample of 35% old ice and 65% first-year ice cover). The equation for the 
calculation of effective brightness temperature, Tx, using the component from the 37 GHz 
vertical channel (Tam), is as follows: 

The coefficients Co, C,, and C; are calculated using climatology. If Tx > Tc, the sea-ice fraction 
within the observed area is flagged as first-year ice. For Tx<Tc the ice cover fraction is 
identified as old ice. 

Weather correction criteria were imposed on sea-ice concentration retrieval after it was 
observed that false ice information was obtained because of the influence of wind and 
atmosphere. The correction procedure uses cut-off values for the 19 GHz horizontal component, 
TBvw,, and TBm -Tm. The ice concentrations are calculated only if the following conditions 
are met: 

If these conditions are not met, the footprint is declared to be ice free. Figures 1OA.l to 10A.4 
illustrate the results of such weather corrections (Lo, personal communication, 1987). 



Figure 10A.l - The effect of weather 
filtering on the HAC algorithm retrieval of 
total ice wncentrations, orbit 3967, 
Labrador region. 

Figure 10A.3 - The effect of weather 
filtering on the HAC algorithm retrieval of 
total ice concentrations, Gulf of St. 
Lawrence, 27 January 1988. 

Figure 10A.2 - Comparison between total 
ice concentrations retrieved with 
ABSIYORK and HAC algorithms, orbit 
3967, Labrador region. 

Figure 10A.4 - Comparison between total 
ice concentration retrieved with AESIYORK 
and HAC algorithms, orbit 3379, NE 
Newfoundland waters, 14 February 1988. 

The HAC algorithm was first tested on SMMR data. During the evaluation it became 
obvious that although the retrieval of total ice wncentration was within the specifications for 
ideal weather conditions, areas of rough seas and overcast sky were identified incorrectly as ice- 
covered ocean. 

Prior to launch, a simple procedure for removing some of the weather effects on the ice 
retrieval was added to the algorithm, but as shown in Figures 10A.l and 10A.2, the problem 
was not solved for severe weather conditions. In addition, the accuracy of the ice edge location 
was degraded by introducing a lower limit (10%) on the calculated ice wncentrations. Using 
only the 37 GHz channel provides the highest available resolution, however, it could lead to 
errors in total ice concentration estimate and ice type flagging when the ice surface is wet or 



under a heavy snow cover. At the onset of snow melt one would also observe large differences 
in retrieved ice concentrations, depending on the time of the observation. 

10A.4 AESIYORK ALGORITHM 

Equation 4 written for the 19 and 37 GHz channels can be solved for F and M, with 
seasonallregional values for c (optical opacity) and Tan (atmospheric component). Sample areas 
in the Arctic and the east coast of Canada were selected for establishing passive microwave 
signatures of fast-year ice, old ice, and calm open ocean. 

Equation 4 can be rewritten for each channel (1-4) in the following manner: 

where F, M, and W are fractions of first-year ice, old ice, and open ocean, respectively. A;, 
A,, A3, A,, and TO1 to T04 are atmospheric correction parameters for each channel. A,, A3, 
and A, can be expressed in terms of A, using frequency dependence of atmospheric absorption 
coefficients [3]. Bi, Ci, and Di represent sensitivity coefficients to the presence of various ice 
types and open ocean. All these parameters were described in detail in PhD Associates Ltd., 
[a. The set of equations 10 to 13 can be solved for A,, F, M, and W. Prior to the calculations 
of ice concentration and ice type identification, the input brightness temperatures (at 37 GHz 
and 19 GHz for both polarizations) are subjected to a multi-step testing procedure. The results 
of this testing determine whether the sensed radiation was emitted from an ice-covered area or 
from open ocean, as shown in the flow chart given in Figure 10A.5. 

The first test decision was made using the contrast between the brightness temperatures 
of open ocean under heavy cloud cover and ice cover radiance. A discriminating function (D) 
of 19 and 37 GHz vertical components was generated. Critical values for D were derived by 
simulating brightness temperatures for open ocean with heavy cloud cover and ice cover near 
the ice edge. Four ranges of critical values were selected to represent a cross section of 
atmospheric conditions. Dml represents a critical value for discriminating the ice edge area 
from the open ocean with a surface roughness caused by wind speeds greater than 10 mls. Dm 
is used for differentiating the ice edge from partially overcast sky and wind-roughened open 
ocean surface. Dm is a criteria for distinguishing ice cover greater than 35% concentration. 
The open ocean, with fully overcast sky, will always result in D < h. When D > 1, the 
ice concentration will be more than 90% and old ice is present in the field of view. 
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Figure 10A.5 - Complete AESIYork temperature independent sea ice algorithm flow chart. 

10A.8 



1 ICE EDGE FILTER FOR WIND 

ICE E W E  FILTER FOR ATMOSPHERE- 

SW-TRUE 

TOT=FY+01 e-̂' 
Figure 10A.5 - continued. 



The data points for which D < Dm and D > Dm are given a second test. This test 
was designed to distinguish low ice concentration areas from open ocean with low winds and low 
to moderate cloud cover. This filter component(label1ed R) relies on the contrast in sensitivities 
of the vertical and horizontal components of the 37 GHz channel to the presence of sea-ice. 

The third step in the filtering algorithm was set up for the analysis of data points with 
a TBOW greater than that for open ocean, but less than that for a 50% ice-covered value. 

The measured brightness temperatures at 19 and 37 GHz are assumed to originate from 
a partially ice-covered area and partially from open ocean roughened by wind. The possible ice 
concentrations and wind speed in the ice-free segment within the field of view are calculated 
using 37 GHz (vertical and horizontal components) and 19 GHz brightness temperatures. Only 
data points for which calculated ice concentrations are greater than 5 % are sent to the data pool 
for ice chart plotting. 

The fourth step is used on data points with Dm > D > Dm,, but with R values the 
same as for a rough ocean surface. Assuming that the field of view is an ice-free area, possible 
surface wind speed and atmospheric contribution to the observed 19 and 37 GHz are calculated. 
Comparison is then made between the atmospheric information from 37 GHz with the amount 
estimated for 19 GHz. If the ratio is outside the range (determined from theoretical simulations), 
the data points are assigned to be from the ice-covered areas. 

To implement the algorithm correctly, the filtering components of the algorithm had to 
be tested. Figures 10A.6 to 10A.8 illustrate the testing of the various components of the filtering 
procedure in comparison with the HAC algorithm. 

Figure 10A.6 - Comparison between total Figure 10A.7 - The effect of weather 
ice concentrations retrieved with filtering on the HAC algorithm retrieval of 
AESIYORK and HAC algorithms, Gulf of total ice concentrations, Beaufort Sea, 26 
St. Lawrence, 27 January 1988. October 1987. 
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Figure 10A.8 - Comparison between total ice wncentrations retrieved with AESIYORK and 
HAC algorithms, Beaufort Sea, 26 October 1987. 

After the filtering procedure is completed, ice concentration and ice fractions are 
calculated using equations 10 to 13, for data points with D > Dm For data points with D < 
DM, 37 GHz channels are used for the calculations of the ice wncentrations, therefore using 
the best resolution in the proximity of an ice edge. The ice type fractions are checked for 
consistency with the brightness temperatures observed on all four channels used in the algorithm. 
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1 1.0 PRECIPITATION VALIDATION 

11.1 INTRODUCTION 

This section summarizes the results of the S S W  rainfall rate retrieval algorithm 
validation effort, which has been completed for the midlatitude and tropical climate zones. The 
validation is presented, followed by an evaluation of the operational D-Matrix rainfall rate 
retrieval algorithm based upon available ground truth. This section concludes with recommenda- 
tions for the improvement of the existing retrieval algorithm, and an example application of an 
alternate algorithm to tropical cyclone data. 

1 1.2 VALIDATION PLAN 

The validation plan was specifically designed to evaluate the performance of the Hughes 
"D-Matrix" algorithm for obtaining rainfall rates from SSWI brightness temperature data. The 
SSWI specifications called for an algorithm which would enable the retrieval of rainfall rates 
from the observations of the DMSP-F8 with 5 mmlhr accuracy over the range 0 - 25 mmlhr at 
25 km spatial resolution. 

Raingages provide the most accurate standard for point estimates of surface rainfall. 
However, because of the high spatial variability of precipitation intensity and the requirement 
to validate 25 Ion space-scale estimates over ocean as well as land areas, area-averaged radar 
rain estimates were utilized as the primary source of validation data in this study. 

In order to maximize the correlation between the radar rain rate estimates and surface 
rainfall amounts, only low antenna elevation angle (a 5 lo) plan-position indicator (PPI) scans 
were used. Also since the radar beam height increases with range, no radar measurements 
beyond a range of 220 km were considered. Ground clutter and obvious radar artifacts were 
also screened. The remaining bin reflectivities were converted to rainfall rate using a standard 
relationship between the reflectivity factor Z and the rainfall rate R (Z = 200 R1-6) and then 
interpolated to a 5 km cartesian grid. In this report R is in units of mmlhr. 

Typically three radar PPI sweeps bracketing the DMSP-F8 overpass time were processed. 
All gridded rainfall rates falling within a 625 km2 circular area of a given SSWI all-channel 
brightness temperature scene were time-interpolated to the S S W  measurement time. The time- 
interpolated, gridded rain rates were subsequently area-averaged and then stored along with the 
corresponding seven sensor data record (SDR) brightness temperatures. In addition, the time- 
interpolated rainfall rates at 5 km resolution were recorded to allow for improved calibration. 



Since individual radar-derived rainfall rate estimates can have a high uncertainty, 
simultaneous raingage measurements were also recorded for the purpose of calibration. Wilson 
and Brandes [I] demonstrated that errors in radar storm-total estimates of rainfall rate could be 
reduced from 63% to 24% using calibrating raingages. 

11.2.3 Data Sources 

SSMII sensor data records (SDR) and environmental data records (EDR) coinciding with 
radar measurements of precipitation were obtained from the Naval Research Laboratory (NRL) 
archive. 

Surface truth for midlatitude validations was obtained from seven radar sites in the United 
Kingdom operational network and the Patrick Air Force Base (PAFB) radar at Cape Canaveral, 
Florida (see Table 11.1 for specifications). Each of these radars provided significant coverage 
of both land and ocean areas, and were operating almost continuously since the launch of the 
DMSP-F8. 

The United Kingdom data were obtained from archives maintained by the British 
Meteorological Office (BMO), and the PAFB data were retrieved from laser disk recordings 
compiled by personnel at the Severe Storms Laboratory at NASAIGoddard Space Flight Center. 

Raingage observations from three to five telemetering raingages are recorded operationally 
for five of the seven United Kingdom sites. If sufficient raingage hourly totals are recorded in 
the same time frame as a given radar sweep, then a real-time correction is applied to the radar 
data using the scheme described by Collier, et al. [2]. Hourly raingage totals and corresponding 
hourly-integrated radar totals were provided along with the radar data on BMO archive tapes. 

Hourly raingage data from National Weather Service (NWS) gages in the vicinity of the 
PAFB radar site were obtained from National Climatic Data Center archives at Asheville, North 
Carolina. Twenty-one raingages in the NWS network provided hourly rainfall rate totals within 
a 200 km radius of the PAFB site. 

Radars operating continuously at Darwin, Australia and Kwajalein, Marshall Islands were 
utilized to validate rain rate retrieval algorithms at tropical latitudes. Located on the northwest 
coast of Australia, the Darwin radar provides reflectivity data both over the continent and over 
the Indian Ocean. The Kwajalein radar yields rain rate data exclusively over the Pacific Ocean. 
Networks of raingages were maintained in the vicinity of both radars to check the calibration of 
the rainrate estimates; however, no real-time correction was applied to the data from either site. 

11.2.4 SatelliteIRadar Data Geolocatio~ 

Since rainfall is highly variable in both space and time, accurate geolocation of both the 
satellite and radar data was essential to the validation effort. 



I1 Radar Site 

I (Midlatitudes) 

Patrick Air Force Base 
Cape Canaveral, Florida 

n Cambome, England, 
United Kingdom 

Upavon, England, 
United Kingdom 

n Clee Hill, England, 
United Kingdom 

Hameldon, England 
United Kingdom 

Chenies, England 
United Kingdom 

Shannon, Ireland, 
United Kingdom 

Castor Bay, 
North Ireland, 
United Kingdom 

(Tropics) 

Darwin, Northern 
Territory, Australia 

Kwajalein, 
Marshall Islands 

Specifications Latitude 

5 cm, C-band, 
1.1 O beamwidth 

10 cm, S-band, 
2O beamwidth 

10 cm, S-band, 
2' bearnwidth 

5.6 cm, C-band, 
1 O beamwidth 

5.6 cm, C-band, 
1 O beamwidth 

5.6 cm, C-band 
1 beamwidth 

10 cm, S-band 
2' bearnwidth 

5.6 cm, C-band 
1 O beamwidth 

5.3 cm, C-band, 
1.7' beamwidth 

10.7 cm, S-band 
2.2O beamwidth 

ATING RA 

Longitude 

80.606W 

5.327W 

1.781W 

2.597W 

2.281W 

0.053W 

6.936W 

6.341W 

[GAGES 

Number 
of gages 

21 

3 

3 

3 

5 

5 

0 

0 



Errors as great as 30 km were observed in the position of land-ocean boundaries in the 
DMSP-F8 SSWI imagery. Since precipitation fields can vary greatly on a spatial scale of 10 
km or less, correlations between brightness temperature features in the SSMII imagery and radar 
echoes were degraded in many situations. Through a cooperative effort between scientists at 
University of Wisconsin, University of Massachusetts (UMASS), and the Naval Research 
Laboratory (NRL), a method was developed to automatically relocate the SSMII data. 

The method consisted of an optimization routine which searched for corrections in the 
spacecraft pitch and yaw angles that maximized the correlation between discontinuities in the 85.5 
GHz horizontally-polarized SSWI brightness temperature imagery and the known location of 
coastal boundaries as specified in the World Data Base I1 (WDB 11) coastline map. The 
transformation between pitch and yaw perturbations and perturbations in the earth coordinates 
of SSMII measurements was provided by Mark Goodberlet of UMASS. The World Data Base 
II coastline map was provided by Gene Poe and Pete Conway of NRL. 

A digital edge detector was applied to the 85.5 GHz horizontally-polarized brightness 
temperature data in original scan format to locate coastal discontinuities in the imagery. If the 
edge detector identified a brightness temperature discontinuity between adjacent footprints of at 
least 30 Kin the United Kingdom or Kwajalein imagery, or a discontinuity of 15 K in the Florida 
or Darwin imagery, then the location of the discontinuity was recorded on a 4 km resolution grid 
using a standard map projection. The World Data Base 11 coastlines were referred to the same 
grid. A smaller edge detector threshold was utilized at tropical and subtropical latitudes to 
account for the smaller landlocean contrast at those latitudes. Swath data from Alaska or the 
U.S.S.R. was used to geolocate Kwajalein data from the same orbit, due to the paucity of large 
land masses in the vicinity of Kwajalein Island. 

A simplex algorithm was invoked to iteratively search for the spacecraft pitch and yaw 
perturbations which maximized the number of grid-point "matches" between the edge-detected 
coastline and the World Data Base II coastline over a 2000 Ion section of the SSWI swath 
centered on the region of interest. The effect of adding a roll perturbation to the optimization 
scheme did not significantly improve image registration. 

Upon review of 10 to 20 relocated SSMII images, the automated procedure appeared to 
locate the satellite data to within about 6 km of the World Data Base II coastline. The WDB I1 
coastline is reported to be accurate to within 3 km. 

The validation radar data were earth-located using the recorded range of the radar bin and 
the elevation and azimuth angle of the radar antenna. The range of the radar bin along the 
earth's surface and the bin altitude were computed using the standard formulae presented in 
Rattan [3]. Given the earth range of the bin, the azimuth of the radar antenna, and the known 
latitude and longitude of the radar site, the earth location of the radar bin was determined using 
the geodetic formulae of Sodano [4]. The uncertainty in the earth location of any radar bin is 
estimated to be on the order of 1-2 tan. 



With the exception of the Shannon and Castor Bay radars, for which no raingage data 
were available, an attempt was made to calibrate the midlatitude radar-derived precipitation 
intensities using coincident hourly raingage recordings. Approximately 50% of all the United 
Kingdom radar data corresponding to DMSP-F8 overpasses had been pre-calibrated using the 
scheme described in Collier, et al. 121. Their scheme relies upon a time-series analysis of radar- 
to-gage ratios, determination of radar "bright-bands", and adjustments for omgraphically-forced 
precipitation. Rainfall rates obtained from the uncalibrated United Kingdom radars, which had 
been assessed using Z = 200 R1'6 (Marshall and Palmer IS]), were left unaltered. 

For the remaining DMSP-F8 overpass times, there were generally insufficient raingage 
data to perform a radar calibration, unless gage data covering a period of one day or more were 
incorporated into the analysis. Despite the relatively large number of raingages recording in the 
vicinity of the PAFB radar site, there were again insufficient data to perform instantaneous radar 
calibrations for most DMSP-F8 overpass times. The inadequacy of the gage networks for 
instantaneous calibrations is due to the high space- and time-variability of precipitation. 

The radar data available from Darwin and Kwajalein were insufficient for performing 
raingage calibrations. The Marshall and Palmer [5] relationship was utilized to interpret the 
reflectivity data from these radars. 

All radar-derived rainfall rates within a 625 km2 circular area centered on a given SSMII 
all-channel scene were time-interpolated to the SSMII measurement time and subsequently area- 
averaged to yield a ground truth rainfall rate product. 

11.3 VALIDATION ERROR 

The total validation error can be divided into two general categories: (1) errors in the 
gridded radar estimates of rainfall rate (at 5 lan resolution), and (2) errors arising from 
atmospheric variability linked to discrepancies in the space and time collocation of the 625 krf 
area-average rainfall rates and the SSMII all-channel measurements. 

These error categories can be further subdivided into contributing error sources. It will 
be assumed in this analysis that raingages provide an accurate standard for surface rain totals over 
a period of one hour. If it is also assumed that the errors from contributing sources are 
uncorrelated, then the error variance of a gridded and time-interpolated radar rainfall rate with 
respect to agage estimate can be expressed as 

where <rv is the error of an instantaneous gridded radar rain rate, and a,̂  is the error arising from 
time-interpolation of the gridded radar measurement to the SSMII measurement time. 



In practice it is only feasible to estimate the error of hourly-integrated radar rain rates 
with respect to gage totals over the same period. In the British Meteorological Office radar 
calibration scheme, rain rates from approximately 12 radar sweeps are averaged to obtain an 
hourly total. The error variance of hourly-integrated radar rain rates may be approximated by 

Here, n is the number of radar sweeps utilized in the hourly integration and af is the error 
introduced by integrating a finite number of sweeps to form an hourly total. Combining Eqs. 
(1) and (2): 

A value for of six tenths of the radar-derived rainfall rate (i.e. 0.6 R, where R is the rain 
rate) was taken from a study by Wilson and Brandes [I]. Harrold, et al. [6] showed that <J{ was 
on the order of 0.1 R. It is assumed that R, which is based on hourly averages in the preceding 
estimates, can be approximated by the instantaneous rain rate for the purpose of making an error 
estimate. This assumption may lead to an overestimate of the error for high instantaneous rain 
rates, since the average rain rate over an hour period which includes a high rain rate event is 
likely to be lower than the instantaneous rain rate. 

The radar rain rate time interpolation error is almost negligible, since the data are 
interpolated from radar measurements separated by 15 minutes at most. A value of 0.05 R is 
estimated for a,., 

The errors due to area-averaging of gridded radar data and co-registration with the D- 
Matrix estimates can be expressed as 

where m is the number of time-interpolated, radar grid boxes averaged over a 625 km2 area, an, 
is the error due to misregistration of SSMA and radar measurements, and ad is the error 
introduced by the discretization of the D-Matrix rain rate estimates. 

Typically 25 radar grid boxes are averaged per 625 km2 area. After relocation of the 
SSMJI measurements according to the method described in Section 11.2.4, the total 
misregistration between SSMII and radar measurements is approximately 7 km, based upon 
comuarisons to the World Data Base II coastlines and an estimated 1 - 2 km error in the radar 
measurements. The validation error due to misregistration is estimated by considering the error 
incurred by estimating a "reference" area-averaging rain rate using area-averaged rain rates at 
different displacements from the reference location. Based upon this approach, am. for a 
displacement of 7 km is found to vary as a logarithmic function of the rainfall rate. 



The rounding of D-Matrix rain rate estimates to integral values leads to a constant u,, = 
.29 mmlhr. 

Utilizing the individual errors estimated above, the total validation error is evaluated and 
plotted in Figure 11.1. Also plotted is the validation error that would result if the geolocation 
of the SSWI data was not corrected, assuming an average 25 Ion misregistration error for 
uncorrected data. It may be noted that from the figure that a 35% to 60% reduction in the 
validation error is achieved by relocating the SSWI data using the automated procedure. The 
validation error of the relocated data varies almost linearly with rainfall rate, with about a 45% 
error at 24 mmlhr rain rate. 

11.4 D-MATRIX ALGORITHM EVALUATION 

DMSP-F8 overpasses of the United Kingdom and PAFB validation sites were separated 
by season into summer, spring-fall, and winter overpasses. Collocated SSWI and radar 
measurements from nine overpasses of the United Kingdom sites and three overpasses of the 
PAFB site during August of 1987 composed the summer validation data set. Seven United 
Kingdom overpasses during September of 1987 and six overpasses of PAFB during September 
and November of 1987 and March of 1988 contributed to the spring-fall validation data set. The 
winter validation data set was derived from twenty-five overpasses of United Kingdom sites 
during January and February of 1988. 

Only radar data from the tropical warm season were available from the Darwin and 
Kwajalein sites. Data from eleven SSMJI overpasses of Darwin and nine overpasses of Kwajalein 
were collocated with the averaged radar rain data to produce the tropical validation data set. The 
Darwin overpasses occurred during February and March of 1988, while the Kwajalein overpasses 
spanned the months of August - November of 1988. 

The total number of collocated area-averaged radar rain rate estimates and SSMII all- 
channel scenes are listed by season in Table 11.2. Listed separately are the number of collocated 
measurements over land and ocean backgrounds. Also included are the number of collocated 
measurements for which the area-average radar rain rate was at least 1 mmlhr. 

Despite prescreening of overpasses to identify those in which significant rain events were 
observed by both the SSMII and radar, only a small fraction of the total number of collocated 
data exceeded the 1 mmlhr threshold. The skewed distribution of rain data is further illustrated 
by the seasonal histograms in Figure 11.2. The histograms indicate that a large percentage of 
rain events at 25 hn resolution have intensities less than 1 mmlhr. At midlatitudes, the winter 
data are more highly skewed towards light precipitation than the summer and spring-fall data. 
The highly skewed winter distribution results in a relatively small number of collocated winter 
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Figure 11.1 - Validation error as a function of rainfall rate. Squares indicate the error standard 
deviation for an average SSMII-radar measurement misregistration of 7 km. An average 
misregistration error of 7 km is expected after the geolocation method described in Section 
11.2.4 is applied to the SSMII measurements. If the geolocation of SSMII measurements is not 
corrected, then the average misregistration of SSMII and radar measurements is approximately 
25 km. The validation error for uncorrected data is indicated by the solid dots in the figure. 



TABLE 11.2 

NUMBERS OF COLLOCATED SSWI ALL-CHANNEL SCENES 
AND RADAR DERIVED RAINFALL RATES 

(Midlatitudes) 

Summer 

Spring-Fall 

Winter 

All Seasons 

(Tropics) 

Warm Seasons: 

LAND OCEAN TOTAL 

Numbers of collocated SSWI all-channel scenes and radar-derived rainfall rates for both 
the midlatitude summer, spring-fall, and winter seasons, and for the tropical warm 
season. The numbers of collocated data over land and ocean regions are also individually 
tabulated. The number in parentheses is the subset of the total sample for which the 
radar-derived rainfall rate was at least 1 mmlhr. 
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Figure 11.2 - Number of collocated SSMII all-channel scenes and area-average radar 
measurements versus radar-derived rainfall rate for (a) the midlatitude summer climate zone, (b) 
the midlatitude spring-fall climate zone, (c) the midlatitude winter climatic zone, and (d) the 
tropical warm climatic zone. Data over land and ocean are included in the histograms. The 
number of data in the first rain rate interval is given in parentheses. 



data over the ocean with rainfall rates greater than or equal to 1 mmlhr (See Table 11.2). In the 
tropics, the rain rate distribution is also stewed towards light rain events (see Figure 11.2d). 

The skewed rain distributions have an important bearing on the statistical analyses to be 
presented in the following sections. 

11.4.2 Midlatitude D-Matrix Aleorithm Error Statistics 

Error statistics of the D-Matrix algorithm rain rate retrievals are presented for the six 
midlatitude climatic zones in Tables 11.3 through 11.8. To compensate for the naturally skewed 
distribution of rainfall rates, the retrieval error statistics are stratified. Statistics are computed 
for different subsamples of the collocated data, such that only D-Matrix estimates and radar- 
derived rainfall rates exceeding specified minimum thresholds are included. As the minimum 
rain rate threshold defining a subsample is increased from 0.0 to 0.5, 1.0, 1.5, and 2.0 mdhr,  
more emphasis is placed upon the performance of the D-Matrix algorithm at higher rainfall rates. 
An increase in the minimum rainfall rate threshold is reflected in an increase in the subsample 
mean rainfall rate and standard deviation (see Tables 11.3 - 11.8). The "error" standard 
deviation (uj is the standard deviation of the difference between the SSMII estimated rainfall rate 
and the radar "ground truth" estimate. In addition to the traditional statistical quantities, the 
success ratio S, which is the ratio of the rain rate estimate "error" variance, u:, to the sum of 
the variances of the validation error and 5 mdhr  retrieval tolerance, is listed for each subsample. 
An S-ratio greater than 1 indicates that the rain rate estimate falls outside the Navy specifications. 
An S-ratio less than or equal to 1 implies that the algorithm performance is within the validation 
accuracy permitted by the data. 

Scatterplots of the D-Matrix rain rate estimates versus radar-derived rainfall rates for each 
of the six midlatitude climatic zones are presented in Figure 11.3. The solid diagonal lines 
drawn on each of the plots define the Â± mmlhr retrieval error range. 

The D-Matrix error statistics can be compared to the error statistics of the best possible 
linear model estimate which are included in the second section of each table. The best linear 
model of the radar rain rates is obtained by regressing the SSWI corrected brightness 
temperatures (SDR data) against the radar rainfall rates using a stepwise procedure. Regressions 
are performed on the same subsamples of collocated data from which the D-Matrix error statistics 
were derived. Since a lower bound of 0 mdhr  is imposed on the D-Matrix rain retrievals, the 
same lower bound is imposed on the regression estimates. Each regression relationship 
represents the best possible model of the radar rain rates which is linear in the brightness 
temperature data, and therefore it defmes an upper limit on the performance that can be expected 
from any linear retrieval algorithm for the data sample in question. 

This section will conclude with a general discussion of the D-Matrix retrieval error 
statistics. Because the channels selected for rain retrievals over land are the same for each season 
and the brightness temperature weightings are similar, the discussion will first focus on land 



retrievals for the three specified seasons and then move to a discussion of rain retrievals over the 
ocean. 

TABLE 1 1.3 

STATISTICS FOR THE MIDLATITUDE SUMMER LAND CLIMATIC ZONE 

CASE I n 

The number of collocated SSMn and radar observations in the sample (n), the mean radarderived rainfall 
rate (R_) and standard deviation (an) of the sample, the bias (b) and error standard deviation (u.) of the rain 
rate estimate, the correlation coefficient (r) between the radar and SSMn-derived rain rates, and the success 
ratio (S) for each case are listed above. k, am b, and a, are given in units of mm/hr. The first five rows 
are the statistics of the D-Matrix rain rate estimates (RL) for the indicated subsets of the full data sample. 
The statistics are stratified because the full data sample is dominated by low rainfall rates. In the second 
section the statistia of linear regression fits to the same subsets of pints  are listed. To maintain 
consistency with the D-Matrix estimates, a lower bound of 0 mm/hr was imposed upon the regression 
estimates. 

1 D-Matrix: 

O.O-SR, RL425 mm/hr 
OSSR, RLS25 mm/hr 
l.OSR, RLSS25 mm/hr 
1.54R, RLSS25 mm/hr 
2.04R, RL425 mmh 

All channel regressions: 

O.OSR, RL525 mm/hr 
0.54R. RL425 mmh 
1.04R. RL425 mm/hr 
1.5SSR, RLS25 mm/hr 
2.0SSR, RL525 mm/hr 

885 
48 
37 
3 1 
27 

885 
48 
37 
31 
27 



TABLE 11.4 

STATISTICS FOR THE MIDLATTTUDE SPRING/FALL LAND CLIMATIC ZONE 

CASE n 

D-Matrix: 

O.OSR, RLS25 mm/hr 1386 
OSfiR, RLS25 mm/hr , 205 
LOSR, U S 2 5  mm/hr 132 
1.5sSR, R U 2 5  mm/hr 99 
2.0SR, RL425 mm/hr 79 

All channel regressions: 

O.OSR, RLfi25 mm/hr 1386 
0.55R, RL<25 mm/hr 205 
l.O<R, RL.525 mm/hr 132 
1 . 5 a ~ ,  RLSZ inni/hr 99 
2.0aR. RLa25 mm/hr 79 

The number of collocated SSMII and radar observations in the sample (n), the mean radarderived rainfall 
rate (Rn) and standard deviation (a,) of the sample, the bias (b) and error standard deviation (aJ of the rain 
rate estimate, the correlation coefficient (r) between the radar and SSMil-derived rain rates, and the success 
ratio (S) for each case are listed above. R,, up, b, and a. are given in units of mm/hr. The first five rows 
are the statistics of the D-Matrix rain rate estimates (RL) for the indicated subsets of the full data sample. 
The statistics are stratified because the full data sample is dominated by low rainfall rates. In the second 
section the statistics of linear regression fits to the same subsets of points are listed. To maintain 
consistency with the D-Matrix estimates, a lower bound of 0 mm/hr was imposed upon the regression 
estimates. 



TABLE 11.5 

STATISTICS FOR THE MIDLATITUDE WINTER LAND CLIMATIC ZONE 

CASE 1 n 

D-Matrix: 

O.OSR, RLS25 nim/hr 3797 
0.5Â£R RL425 mm/hr 199 
LOaR, X i s 2 5  nim/hr 110 
1.5SR, RLis25 nun/hr 66 
2.0SR, X S 2 5  imn/hr 36 

All channel regressions: 

O.O^R, RLS25 mni/hr 3797 
OSaR, RLa25 mm/hr* 
l.OSR, RLa25 nun/hr* 
1.5SR, RLS2.5 &* 
2.04R, RLS25 mmW 

*None of the channels could explain a significant portion of the variance; therefore no regression fit was 
attemoted. 

The number of collocated SSM/I and radar observations in the sample (n), the mean radar-derived rainfall 
rate (FQ and standard deviation (01) of the sample, the bias (b) and error standard deviation (o.) of the rain 
rate estimate, the correlation coefficient (I) between the radar and SSM/I-derived rain rates, and the success 
ratio (S) for each case are listed above. & &, b, and a. are given in units of mm/hr. The first five rows 
are the statistics of the D-Matrix rain rate estimates (RL) for the indicated subsets of the full data sample. 
The statistics are stratified because the full data sample is dominated by low rainfall rates. In the second 
a t i o n  the statistics of linea~ regreasion fits to the m e  sub& of points are listed. To mniatain 
consistency with the D-Matrix estimates, a lower bound of 0 mm/hr was imposed upon the regression 
estimates. 



TABLE 11.6 

STATISTICS FOR THE MIDLATTlWDE SUMMER OCEAN CLIMATIC ZONE 

D-Matrix: 

O.OSR, R O S E  mm/hr 551 .293 1.31 -.094 1.26 A46 .063 
0.55R, ROi.25 mm/hr 14 6.63 2.90 -2.71 4.27 .012 506 
l.OSR, ROS25 mm/hr 14 6.63 2.90 -2.71 4.27 .012 .506 
1.55R, R0525 mm/hr 12 6.56 2.91 -2.14 3.66 .I49 .374 
2.04R. ROS25 mm/hi 11 6.98 2.64 -2.62 3.71 .317 .371 

All channel regressions: 

O.OSR, ROS25 mm/hr 55 1 .293 1.31 .098 .909 .728 .033 
0.54R. R0425 mm/hr 14 6.63 2.90 .000 2.61 .435 .I89 
LOSR, ROS25 mm/hr 14 6.63 2.90 .OOO 2.61 435 .I89 
1.5SR, ~ 0 ~ 2 5  mm/hr 12 6.56 2.91 .000 2.62 .437 .I91 
2.04R, RO425 mm/hr 11 6.98 2.64 .000 2.27 SO8 .I39 

The number of collocated SSM/I and radar observations in the sample (n), the mean radar-derived rainfall 
rate (K_) and standard deviation (as) of the sample, the bias (b) and error standard deviation (u.) of the rain 
rate estimate, the correlation coefficient (I) between the radar and SSM/I-derived rain rates, and the success 
ratio (S) for each case are listed above. R_, uR, b, and a. are given in units of mmlhr. The first five raws 
are the statistics of the D-Matrix rain rate estimates (RO) for the indicated subsets of the full data sample. 
The atistics are stratified beawe the hU data sample is domiaated by low d l  rates. In the second 
section the statistics of linear regression fits to the same subsets of points are listed. To maintain 
consistency with the D-Matrix estimates, a lower bound of 0 mm/hr was imposed upon the regression 
ftstimates~ 



TABLE 11.7 

STATISTICS FOR THE MIDLATTTUDE SPRINGIFALL OCEAN CLIMATIC ZONE 

CASE n k OR 

D-Matrix: 

All channel regressions: I I I 

The number of collocated SSMn and radar observations in the sample (n), the mean radarderived rainfall 
rate (Rn) and standard deviation (an) of the sample, the bias (b) and error standard deviation (u.) of the rain 
rate estimate, the correlation coefficient (r) between the radar and SSMnderived rain rates, and the success 
ratio (S) for each case are listed above. R_, uR, b, and a. are given in units of mm/hr. The first five rows 
are the statistics of the D-Matrix rain rate estimates (RO) for the indicated subsets of the full data sample. 
The statistics are stratified because the full data sample is dominated by low rainfall rates. In the second 
section the statistics of linear regression fits to the same subsets of points are listed. To maintain 
consistency with the D-Matrix estimates, a lower bound of 0 mm/hr was imposed upon the regression 
estimates. 



TABLE 11.8 

STATISTICS FOR THE MIDLATITUDE WINTER OCEAN CLIMATIC ZONE 

CASE 

D-Matrix: 

O.OfiR, ROfi25 mm/hr 
0.5;SR, R 0 5 2 5  &* 
l.OSR, ROS25 mm/hr* 
1.5SR, ROS25 mm/hr* 
2.05R, ROS25 mm/hr* 

All channel regressions: 

O.OSR, ROS25 mm/hr 
0.5SR, ROS25 mm/hr* 
l.O5R, R 0 5 2 5  nini/hr* 
1.55R, ROC25 &* 
2.0Â£R ROS25 mm/hr* 

*Sample size insufficient for analysis to be performed. 

The number of collocated SSMO and radar observations in the sample (n), the mean radarderived rainfall 
rate (R,,,) and standard deviation (o,) of the sample, the bias (b) and error standard deviation (ad of the rain 
rate estimate, the correlation coefficient (r) between the radar and SSMIIderived rain rates, and the success 
ratio (S) for each case are listed above. R_. a,, b, and a. are given in units of nun/hr. The first five rows 
are the statistics of the D-Matrix rain rate estimates (RO) for the indicated subsets of the fill1 data sample. 
The statistics are stratified because the foil data sample is dominated by low rainfall rates. In the second 
section the statistics of linear regression fits to the same subsets of points are listed. To maintain 
consistency with the D-Matrix estimates, a lower bound of 0 mm/hr was imposed upon the regression 
estimates. 





The D-Matrix algorithm for the midlatitude summer land climatic zone shows the best 
overall ability to estimate surface rainfall rates. Although the errors in the rain rate estimates 
are somewhat greater than the specified Â± mdhr  at high rainfall rates, the wrrelation between 
the D-Matrix retrievals and the radar rain rates (maximum of .761) is relatively high and 
comparable to wrrelations obtained using other microwave sensors over land. For example, 
Spencer [7] found a .795 correlation between regressed Scanning Multichannel Microwave 
Radiometer (SMMR) brightness temperatures and radar-derived rainfall rates in summer rainfall 
over the midwest United States. The D-Matrix estimates are somewhat low-biased (- 1-2 
mmlhr) with respect to radar, see Figure 11.3a. The linear regression estimates based upon the 
same samples of data yield slightly better estimates, with a maximum correlation of .784 over 
the entire sample of data. 

The D-Matrix spring-fall land algorithm performs poorly in relation to the summer 
algorithm. In general the D-Matrix algorithm greatly overestimates light rain rates, which leads 
to positive biases of approximately 6 m d h r  and random errors of 8 mmlhr, and very low 
wrrelations to radar rain rates; see also Figure 11.3b. The success ratio (-2 for rainfall rates 
2 .5 mmlhr) indicates that the D-Matrix retrievals fall outside the Navy specifications. 
Regression-based estimates of the data are superior, with lower mean errors (-2 - 3 mmlhr) and 
modest but somewhat higher correlations with radar rain rates (maximum r = .602). 

D-Matrix winter rain rate estimates are extremely high-biased, with very large mean 
errors (- 14 mmlhr) and almost no correlation to radar. The regression models are not much 
better (see Table 11.5 and Figure 11.3~). 

A comparison of D-Matrix rain imagery and brightness temperature imagery indicated that 
lower land backeround briehtness temueratures during the fall and winter seasons mav have been 
interpreted as signatures of rainfall, leading to extreme positive biases in retrievals.. 

The midlatitude summer ocean D-Matrix algorithm shows less skill in estimating surface 
rainfall rate in comparison to the land algorithm for the same season, although the number of 
collocated D-matrix estimates and rainfall rates greater than 1 mmlhr (14) is admittedly small. 
The D-Matrix retrieval errors (- 4 mmlhr) are within the Navy specifications, but the correlation 
between retrieved and radar rain rates is low (maximum r = .446). The D-Matrix estimates are 
also low-biased on the order of 2 - 3 m m h  for rainfall rates greater than .5 m m h .  Regression 
estimates based upon the summer ocean data also yield low wrrelations with radar except in the 
range of very low rainfall rates (Table 11.6 and Figure 11.3d). 

The spring-fall D-Matrix rain rate estimates over ocean are essentially unwrrelated with 
radar-derived rainfall rates (see Table 11.7 and Fig. 1 l.3e). Radar-derived rainfall rates are 
typically underestimated, with mean errors on the order of 5 - 6 mmlhr. D-Matrix success ratios 
exceed 1 for two of the subsamples, which indicate a performance outside of the prescribed Â± 
mmlhr tolerance. Regression estimates based upon the same data yield a much greater 
wrrelation with radar rain rates, and errors are within specifications. The regression results 



suggest that significant improvements can be made in the retrieval of rainfall rates over the ocean 
in the spring-fall season. 

Although only a small number of collocated radar rain rates greater than 1 mmthr were 
obtained during the winter season over the ocean, the plot in Figure 11.3f reveals a large positive 
bias in D-Matrix retrievals. Errors are within specifications only because the mean of the rain 
rate sample is extremely small (- .05 mmlhr). Stratification of the winter ocean sample by a 
minimum threshold of 1 mmthr eliminates all but two collocated measurements. Regression 
estimates based upon the entire sample of data yield low correlations with radar (Table 11.8). 

TABLE 1 1.9 

STATISTICS FOR THE TROPICAL WARM SEASON LAND CLIMATIC ZONE 

CASE n % OR b a. r S 

D-Matrix: 

All channel regressions: 

O.O<R, RLS25 mmilu 
O.SfiR, RLS25 mmhr 
l.OSR, RL425 mm/hr 
1.54R, RL425 inm/hr 
2.0SR, RL425 mm/hr* 

*Sample size insufficient for analysis to be performed. 

The number of collocated SSM/I and radar observations in the sample (n), the mean radarderived rainfall 
rate (RJ and standard deviation (as) of the sample, the bias (b) and error standard deviation (0.) of the rain 
rate estimate, the correlation coefficient (r) between the radar and SSMIIderived rain rates, and the success 
ratio (S) for each case are listed above. R_, a,, b, and o. are given in units of mm/hr. The first five rows 
are the statistics of the D-Matrix rain rate estimates (RL) for the indicated subsets of the full data sample. 
The statistics are stratified because the full data sample is dominated by low rainfall rates. In the second 
section the statistics of linear regression fits to the same subsets of points are listed. To maintain 
consistency with the D-Matrix estimates, a lower bound of 0 mm/hr was imposed upon the regression 
estimates. 



TABLE 11.10 

STATISTICS FOR THE TROPICAL WARM SEASON OCEAN CLIMATIC ZONE 

CASE n 

The number of collocated SSMA and radar observations in the sample (n), the mean radarderived rainfall 
rate (RJ and standard deviation (ad of the sample, the bias (b) and error standard deviation (0.) of the rain 
rate estimate, the correlation coefficient (r) between the radar and SSMII-derived rain rates, and the success 
ratio (S) for each case are listed above. R_, a,, b, and a. are given in units of mm/hr. The first five rows 
are the statistics of the D-Matrix rain rate estimates (SO) for the indicated subsets of the lull data sample. 
The statistics are stratified because the full data samle is dominated bv low rainfall rates. In the second - 

section the statistics of linear regression fits to the &IO subsets of points are listed. To maintain 
consistency with the D-Matrix estimates, a lower bound of 0 mm/hr was imposed upon the regression 
estimates. 



11.4.3 Tronical D-Matrix Aleorithm Error Statistics 

Statistics of the tropical algorithm rain rate estimates for land and ocean environments are 
presented in Tables 11.9 and 11.10, respectively. The statistical analyses are identical to those 
performed on the midlatitude data. Over either land or ocean, it is evident from the tables that 
although the D-Matrix algorithms may perform within specifications (S-factors all <I ) ,  the 
correlation of rain estimates with ground truth estimates is relatively low. Over either surface, 
correlations are all less than .2 for radar derived rainfall rates greater than 1 mmlhr; the bias and 
error standard deviation of the estimates are on the order of 2 to 3 mmlhr. These results are 
reflected in the D-Matrix retrieval plots in Figure l l-4a and l l-4b. Large positive biases in the 
D-Matrix estimates are noted at rainfall rates less than about 4 mmlhr, while there is a trend of 
negative biases at higher rainfall rates. 

The linear regression estimates yield consistently higher correlations with the surface radar 
data in comparison to the D-Matrix estimates. Although the data sample is admittedly small over 
land in the tropics, the correlation coefficients of the regression estimates are close to .6, while 
the error standard deviations range from 1.0 to 1.5 mmlhr. Bias in the regression estimates is 
positive, but about an order of magnitude smaller than the bias in the D-Matrix estimates (- .2 
to .3 mmlhr). Over the ocean, the correlation coefficients of the regression estimates are 
somewhat smaller than those over land (- .4 to .7), but again the error standard deviations and 
bias figures are significantly reduced in comparison to those of the D-Matrix estimates. Error 
standard deviations are on the order of 1.5 mmlhr, and the bias figures are all less than 1.0 
mmlhr in absolute value. The regression estimates which were based upon the full land and 
ocean data samples are plotted versus the radar derived rainfall rates in Figures 1 1 . 4 ~  and 11.4d, 
respectively. 

Although lower rainfall rates tend to be overestimated and higher rainfall rates tend to be 
underestimated by the regression formulae, the overall bias and scatter in the regression estimates 
is significantly smaller than the bias and scatter of the D-Matrix estimates. Most of the 
regression estimates fall within approximately Â± mmlhr of the radar derived rainfall rates. 
These statistics and plots suggest that regression-based algorithms may be constructed which yield 
rain rate estimates which are superior to the D-Matrix estimates. 

11.5 ALTERNATE ALGORITHMS 

The plots of the D-Matrix rain rate estimates versus radarderived rainfall rates in Figures 
11.3 and 11.4 all show a common trend: at low radar-derived rainfall rates, the D-Matrix 
algorithm tends to overestimate rainfall rate, while at high rainfall rates the D-matrix algorithm 
tends to underestimate rain intensity. Linear regression models, in general, have this feature 
since scatter due to errors and nonlinearities in the relationship between variables is minimized 
with respect to the mean value of the independent data (i.e., in this case the mean rainfall rate). 



Figure 11.4 - D-Matrix retrievals of rainfall rate versus radar-derived rainfall rate for (a) the 
tropical warm season over land, and (b) the tropical warm season over ocean. Also shown are 
the linear regression estimates of rainfall rate based upon the collocated SSMII brightness 
temperatures and radar derived rainfall rates between 0 and 25 mdhr  for (c) the tropical warm 
season over land, and (d) the tropical warm season over ocean. Solid lines define the Â± mdhr  
retrieval error limits. 



Figure 11.5 - Radiative transfer model computations of the 85.5 GHz vertical polarization 
brightness temperature upwelling from a cloud over land contai~ng (a) only liquid 
hydrometeors, and (b) both liquid and ice hydrometeors. The cloud vertical structure in (a) is 
designed to simulate stratiform precipitation, whereas in (b) a convective cloud is modeled. The 
footprint-average rainfall rate is plotted as a function of the footprint-average upwelling 
brightness temperature. Solid limes are isolines of cloud fraction within the radiometer footprint, 
which run in the sequence .25, .50, .75, and 1.0 from left to right in the plots. Dashed lines 
are isolines of in-cloud rainfall rate which runs in the sequence 4, 8, 12, 16.20, and 24 mmlhr 
from bottom to top in the plots. Model computations are provided by Kummerow [8]. 



A physical reason for the rainfall rate-dependent bias can be understood using model 
simulations of the brightness temperature upwelling from precipitating clouds. In Figure 11.5 
are plotted model simulations of the 85.5 GHz vertically-polarized brightness temperature 
upwelling from precipitating clouds over land. Separate, simulations are performed for clouds 
which fill different fractions of the radiometer footprint. The clouds in Figure 11.5a contain only 
liquid precipitation, in an attempt to simulate stratiform precipitation in which cloud updraft 
speeds are relatively low. In the figure, the footprint-average rainfall rate is plotted as a function 
of the footprint-average upwelling brightness temperature. Isolines of cloud fraction (solid) and 
in-cloud rainfall rate (dashed) are also indicated. The clouds in Figure 11.5b contain both liquid 
and ice precipitation-sized particles in a vertical distribution consistent with the structure of 
strongly convective clouds or thunderstorms. Figure. 11.5 clearly indicates a nearly exponential 
relationship between rainfall rate and upwelling brightness temperature. Model simulations of 
upwelling brightness temperatures over land at the other SSMII channel frequencies and 
polarizations show a similar nonlinear relationship. Over ocean backgrounds, model simulations 
indicate more complicated brightness temperature-rainfall rate relationships due to the generally 
lower ocean emissivity and the effects of raindrop emission (see Kummerow [9]). 

These simulations suggest that linear models are in most cases inadequate to describe the 
relationship between brightness temperature and rain rate. An exception was shown by Spencer 
[lo] to exist for convective precipitation over the ocean, where a linear combination of the 
brightness temperatures in the vertically and horizontally polarized 37 GHz channels of the 
SMMR was found to be linearly related to area-average rainfall rate. However, in tropical 
cyclones, where a mixture of convective and stratiform precipitation is present, Olson [ l l ,  121 
demonstrated that rain retrievals using the 37 GHz data alone tended to overestimate the intensity 
of lighter rainfall. Superior rain rate estimates were obtained when data from channels at the 
lower SMMR frequencies (e.g. 18 GHz) were incorporated into a physical retrieval method. 

In addition to the nonlinear relationship between rainfall rate and brightness temperature, 
a comparison of the model curves in Figure 11.5 indicates that the type of precipitation 
(stratiform or convective) also has a bearing on the microwave signature of rainfall. The lack 
of ice in the stratiform cloud simulation causes the brightness temperature to become relatively 
insensitive to changes in the rainfall rate at rainfall rates greater than a few mmlhr. On the other 
hand, scattering from increasing numbers of ice hydrometeors in the convective cloud causes the 
brightness temperature to decrease with rain rate at higher rainfall rates. Clearly a mixture of 
the two precipitation regimes could lead to difficulties in making rain estimates, unless 
information from other channels is incorporated. 

Two approaches are undertaken in an attempt to obtain improved regression models for 
rainfall rate. First, the residuals in the linear regression analyses are weighted to emphasize 
errors at the higher rainfall rates. Weighting by an increasing function of the rainfall rate helps 
to compensate for the skewed distribution of rainfall rates, which is dominated by low rain rates 
(see Figure 11.2). Although the errors in regression estimates of rainfall rate in the range of low 
rainfall rate tend to increase by this approach, they are more likely to remain within the specified 



Â± mmlhr error limits because their magnitudes are initially small. Alternatively, improved rain 
rate estimates are obtained at higher rainfall rates due to the weighting. 

The problems experienced with linear regression models can be partly overcome by 
utilizing nonlinear predictorslpredictands which more closely match the physical relationship 
between brightness temperature and rainfall rate. The simplest nonlinear algorithm to implement 
operationally is 

where the rainfall rate is expressed as an exponential function of the seven SSM/I-measured 
brightness temperatures Ta,, with fitted constants a, and c. The coefficients a, are determined by 
regressing ln(R+c) against the SSWI brightness temperatures for different values of the constant 
c. Experimentation with the sets of collocated SSM/I and radar data indicate that values of c 
between 1 and 16 may be adequate for most climatic zones and seasons. The value of formula 
(5) is that the nearly exponential dependence of rainfall rate on brightness temperature is 
established. The fitted coefficients a, allow for the variations in curvature of the brightness 
temperature to rainfall rate relationship which may be induced by varying cloud ice contents or 
fractional footprint coverage. 

Regressions of both R and ln(R+c) against SSWI brightness temperature data were 
performed in an attempt to find a general retrieval formula for rainfall rate. Because the 
calibration of the radars at Darwin and Kwajalein was checked frequently as part of the Tropical 
Rainfall Measuring Mission (TRMM) program (see Simpson, et al. [13]), only data from these 
radars were utilized in the rain retrieval algorithm development. Collocated SSMII and radar 
data were separated into land and ocean samples using a bitmap, and all data within 69 km 
(approximately one 19.35 GHz footprint width) of coastlines were filtered. In addition, flooded 
soil regions over land, as determined by the McFarland and Neale (personal communications) 
brightness temperature discriminant function, were filtered from the analysis. Residuals in the 
regressions were weighted by a factor of RO-5 to compensate for the naturally skewed rainfall 
distribution. 

Statistics of the rainfall rate regression estimates over land and ocean are presented in 
Tables 11.11 and 11.12, respectively. It may be noted from Table 1 1.1 1 that over land, either 
the linear or exponential model estimates are substantially better than the D-Matrix estimates. 
The mean error of the linear regression estimates for rainfall rates greater than or equal to .5 
mmlhr is 1.14 mmlhr, which is significantly less than the D-Matrix error standard deviation 
(3.06 mmlhr). It would appear that the exponential models do not perform quite as well as the 
linear regression models, based upon the statistics in Table 11.11. Correlations to the radar rain 
rates are slightly lower, and error standard deviations are roughly the same. However, the 
overall bias of the exponential model estimates is somewhat lower, and an application of the 
exponential regression formulae to diverse rain systems over the tropics and midlatitudes 
indicated generally superior performance with respect to linear models. The exponential models 
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TABLE 11.11 

REGRESSION MODEL STATISTICS BASED UPON THE TROPICAL WARM 
SEASON DATA OVER LAND 

CASE 7 n 

Linear Regression: 
O.OfiR, RL.525 
OSfiR, RLS25 mm/hr 

Log regression (c=16.0): 
0.05R, RL425 mm/hr 
0.5fiR, RLS25 mm/hr 

Log regression (c=8.0): 
O.OfiR, RL525 mm/hr 
0.5SR, RLG25 mm/hr 

Log regression (c=4.0): 
O.O-SR, RL425 mm/hr 
OS-SR, RL425 mm/hr 

Log regression (c=2.0): 
O.OfiR, RLs25 mm/hr 
OS-SR, RL425 mm/hr 

The residuals in all regressions were weighted by the square root of the rainfall rate. The number of 
collocated SSM/I and radar observations in the sample (n), the mean radar-derived rainfall rate (lU and 
standard deviation (u.) of the sample, the bias (b) and error standard deviation (u.) of the rain rate estimate, 
the correlation coefficient (I) between the radar and SSM/Iderived rain rates, and the success ratio (S) for 
each case are listed above. R_, u,,, b, and u. are given in units of mm/hr. The models are categorized as 
linear models, which include the D-Matrix algorithm, and exponential models, in which tn(R+c) is 
regressed against the SSMII brightness temperatures. Statistics are stratified by an imposed minimum on 
the D-Matrix (RL) and radarderived (R) rainfall rates. A sample minimum of 0.5 mm/hr emphasizes the 
errors at higher rainfall rates. To maintain consistency with the D-Matrix estimates, a lower bound of 0 
mm/hr was imposed upon the r e d o n  estimates. 



TABLE 11.12 

REGRESSION MODEL STATISTICS BASED UPON THE TROPICAL WARM SEASON DATA OVER 

CASE 

Linear Regression: 
O.O4R, R 0 4 2 5  mm/hr 
OSfiR, R 0 4 2 5  mm/hr 

Log regression (c=16.0): 
O.OSR, ROS25 mm/hr 
O.54R, R 0 4 2 5  mm/hr 

Log regression (c=8.0): 
O.O4R, RO425 mm/hr 
OSSR, ROS25 mm/hr 

Log regression (c=4.0): 
O.O<R, ROS25 mmlhr 
0.5SR, R O S S  min/hr 

Log regression (c=2.0): 
O.OSR, ROS25 mm/hr 
0.54R, R0425  m m h  

OCEAN 

The residuals in all regressions were weighted by the square root of the rainfall rate. The number of 
collocated SSMA and radar observations in the sample (n), the mean radarderived rainfall rate (R,$ and 
standard deviation (01) of the sample, the bias (h) and error standard deviation (aJ of the rain rate estimate, 
the correlation coefficient (I) between the radar and SSMAderived lain rates, and the success ratio (S) for 
each case are listed above. R_ %, b, and a. are given in units of mm/hr. The models are categorized as 
linear models, which include the D-Matrix algorithm, and exponential models, in which Pn(R+c) is 
regmsed against the SSMA brightnw temperatnm. Statistics am stratified by an impcaed minimum on 
the D-Matrix (RO) and radarderived (R) rainfall rates. A sample minimum of 0.5 mmlhr emphasizes the 
errors at higher rainfall rates. To maintain wnsiskacy with the D-Matrix estimates, a lower bound of 0 
mm/hr was imwsed uoon the r e m i o n  estimates. 



REGRESSION MODEL STATISTIC! 
LAM 

CASE n 

Linear Regression 
wlo 85 GHz data: 
O.O^R, RL425 mm/hr 120 
0.54R, RLS25 mm5r 37 

TABLE 11.13 

Log regression (c= 1.0) 
wlo 85 GHz data: 
O.OfiR, RLS25 mm/hr 
0.5SR, RLS25 mm/hr 

3 BASED ' 
), WITH0 

K, 

120 
37 

?ARM SEASON DATA OVER 

The residuals in all regressions were weighted by the square root of the rainfall rate. The number of 
collocated SSMA and radar observations in the sample (n), the mem radar-derived rainfall rate (R_) and 
standard deviation (an) of the sample, the bias (b) and error standard deviation (a.) of the rain rate estimate, 
the correlation coefficient (r) between the radar and SSMnderived rain rates, and the success ratio (S) for 
each case are listed above. & a,,, b, and a, are given in units of mm/hr. The models are categorized as 
linear models, which include the D-Matrix algorithm, and exponential models, in which Pn(R+c) is 
regressed against the SSMn brightness temperatures. Statistics are stratified by an imposed minimum on 
the D-Matrix (RL) and radarderived (R) rainfall rates. A sample minimum of 0.5 mm/hr emphasizes the 
errors at higher rainfall rates. To maintain consistency with the D-Matrix estimates, a lower bound of 0 
mmlhr was imnosed uoon the reeression estimates. 



TABLE 11.14 

REGRESSION MODEL STATISTICS BASED UPON THE TROPICAL WARM SEASON DATA OVER 
OCEAN, WITHOUT TH6 85.5 GHz DATA 

Linear Regression 
wlo 85 GHz data: 
O.OSR, R 0 5 2 5  mm/hr 1361 
0.54R, R 0 4 2 5  min/hr 241 

Log regression (c=2.0) 
wlo 85 GHz data: 
O.OSR, R 0 4 2 5  mm/hr 1361 
OSSR, ROS2.5 mm/hr 241 

The residuals in all regressions were weighted by the square root of the rainfall rate. The number of 
collocated SSMn and radar observations in the sample (n), the mean radarderived rainfall rate (RJ and 
standard deviation (an) of the sample, the bias (b) and error standard deviation (o.) of the rain rate estimate, 
the correlation coefficient (r) between the radar and SSM/I-derived rain rates, and the success ratio (S) for 
each case are listed above. R_, an, b, and a. are given in units of mm/hr. The models are categorized as 
linear models, which include the D-Matrix algorithm, and exponential models, in which Pn(R+c) is 
regressed against the SSMn brighturn t emperah .  Statistics are stratified by an imposed minimum on 
the D-Matrix (RO) and radar-derived (R) rainfall rates. A sample minimum of 0.5 mm/hr emphasizes the 
errors at higher rainfall rates. To maintain consistency with the D-Matrix estimates, a lower bound of 0 
mm/hr was imnnsed unon the reoression estimates. 



worked better because the 85.5 GHz SSWI brightness temperature data, which provide greater 
signal at lower rainfall rates, were selected in the stepwise regression procedure. The 85.5 GHz 
data were not selected in the linear regression over land. 

Plots of the D-Matrix estimates and the exponential model estimates (c=8.0 mmlhr) 
versus radar derived rainfall rate are presented in Figures 11.6a and 11.6c, respectively. 
Although rainfall rates greater than 5 m m h  tend to be underestimated by the exponential model, 
the majority of rain estimates are within Â± mmlhr of the radar rainfall rates. The exponential 
model estimates compare favorably with the D-Matrix estimates, which are generally high biased. 

Linear regression estimates of rain rates over the ocean also show an improvement over 
the D-Matrix estimates (Table 11.12). Errors with respect to radar rainfall rates are reduced 
significantly (3.56 m d h r  to 1.21 mmlhr for rainfall rates 2 .5 mmlhi), and correlations 
increase dramatically. A maximum correlation of .761 is achieved over the entire data sample. 

Rainfall rate estimates obtained horn the exponential models are slightly more accurate 
than the linear regression estimates, and the bias in the exponential model estimates is generally 
reduced. A minimum error standard deviation of 1.19 m m h  is achieved by the exponential 
model with c=8.0 mmlhr for radar rainfall rates greater than or equal to .5 mmlhr. Plots of the 
D-Matrix and exponential model (c=8.0 mmh)  rain rate estimates versus the radar derived rain 
rates over ocean are presented in Figures 11.6b and 11.6d. As noted earlier in the regression 
analyses over land (Figure 11.6c), the ocean regression estimates tend to be low at rainfall rates 
greater than 5 mmlhr, but the majority of estimates fall within Â± mdhr  of the radar rain rates. 
In contrast, the D-Matrix rain rate estimates are generally high biased and show much greater 
deviation from the radar rain rates. 

Due to the recent degradation of the SSWI 85.5 GHz channels on the DMSP-F8, the 
regression analyses were repeated with the 85.5 GHz brightness temperature data in both 
polarizations removed. Selected statistics from these analyses for land and ocean backgrounds 
are presented in Tables 11.13 and 11.14, respectively. One may recall that over land, the 85.5 
GHz data were not selected in the linear regression analysis by the stepwise procedure; therefore 
the statistics of the linear models in Tables 11.11 and 11.13 are identical. 

It is curious to note that the most accurate exponential model (c= 1.0 mmlhr) appears to 
outperform all other models when the 85.5 GHz data are removed. This result is an artifact of 
the stepwise procedure. Since the 85.5 GHz data are generally most highly correlated with 
rainfall rate, these data were selected first in the all-channel regressions; the partial correlations 
of data from the remaining channels did not warrant substitution of the 85.5 GHz data with data 
from the lower-frequency channels. However, with the 85.5 GHz brightness temperature data 
removed, a different combination of channels was selected which yielded regression estimates 
with a somewhat higher correlation to the radar rain rates. The relatively small sample of 
validation data over land may have contributed to some ambiguity in the selection of an optimal 
regression model. 



Figure 11.6 - D-Matrix and regression estimates of rainfall rate versus radar-derived rainfall rate 
from the tropics. D-Matrix rain rate estimates over land and ocean are plotted in (a) and (b), 
respectively. Logarithmic regression estimates over land and ocean (c=8.0 mmthr) are plotted 
in panels (c) and (d), respectively. The regression formulae were based upon collocated SSMII 
brightness temperatures and radar-derived rainfall rates obtained from the Darwin and Kwajalein 
validation sites. Solid lines define the +5 mmlhr retrieval error limits. 



Application of the regression models to SSMII observations of diverse rain systems in the 
tropics and midlatitudes revealed that the formulae which did not incorporate the 85.5 GHz data 
tended to underestimate light rains over land. This is because the signal from light rainfall is 
relatively small in the lower-frequency SSWI data, and this smaller signal is obscured by 
variations in surface emission. 

Regressions over the ocean which did not include the 85.5 GHz SSMII brightness 
temperatures yielded rain rate estimates which were about as accurate as those which included 
the 85.5 GHz data (see Tables 11.12 and 11.14). Only small differences in retrieved rain 
distributions were noted upon application of both formulae to SSWI observations of several 
storms. Of the regression models which did not include the 85.5 GHz data, the exponential 
model with c=2.0 mmlhr produced optimal rain rate estimates over the ocean. 

11.6 RECOMMENDATIONS 

The regression analyses performed in the last section provided simple formulae which may 
be utilized to improve the retrieval of rainfall rates over land and ocean within the framework 
of the SSWI operational retrieval software. It should be noted that although the regression 
formulae determined in Section 11.5 were based upon tropical radar data, application of these 
formulae to midlatitude rain systems yielded rain rate estimates which were climatologically 
realistic and consistent with available radar. 

The statistics and independent application of the regression formulae suggest that if the 
85.5 GHz SSMII data are available, then the exponential models with c=8.0 mmlhr provide the 
best estimates of rainfall rate over land and ocean. Similar testing revealed that the exponential 
models with c= 1.0 mmlhr over land and c=2.0 mmlhr over ocean yielded optimal results if the 
85.5 GHz data were not available. These formulae would be applied if the screening logic 
described below is satisfied. 

The screening logic utilizes the Hughes' negative polarization test for bad data. After 
passing this test, if the all-channel SSMII brightness temperature scene is over land, then the 
McFarland and Neale screening logic is applied. If the brightness temperature scene is over the 
ocean, then a discriminant function developed by the authors is applied to eliminate false rain 
signatures near coasts. Coastal pixels are not processed. 

SUMMARY: 

The following is the recommended rain retrieval algorithm, including screening logic to 
test for the presence of rain. 



SCREENING LOGIC: 

If the 85 GHz channels are available then 

If TMv - TBgSH < -2 K OT 

TMW - TMm < -2 K or 
TB19,, - TBlgH < -2 K, then flag as indeterminate 

Else if SSMII measurement is over land, then 

If Tmv - TBlw S 4 K and 
(TBUV + TB37v)12 - (TBIHH + TM7ii)12 and 
Tmv- TWN < -1 K and 
TBUV > 268 K 

If TuMv - TBlw 5 4 K and 
(TB19V + TB~w)I~  - FBI% + TB37H)/2 > and 
TMw - TBlgV < -3 K and 
TBMV - TmTv < -5 K and 
TBKH - Tm < -4.1 K and 
TBUV > 268 K, then compute rain rate over land, 

Else rain rate = 0 m d h r .  

Else if SSMII measurement is over the ocean, then 

If -1 1.7939 - .02727 Tmw + .09920 Tmm > 0 K, then 
compute rain rate over ocean, 

Else rain rate = 0 mmlhr. 

Else SSMII measurement is coastal; flag as indeterminate. 

Else the 85 GHz channels are not available then 

If Tmw - Tmm < -2 K or 
TBlg,, - TBIW < -2 K, then flag as indeterminate 

Else if SSMII measurement is over land, then 



If T- - TBisv S 4 K and 
(T~19~ + TB3~)12 - (T~19~ + T~37~)12 > and 
TBSN - TBW < -6.4 K and 
TBW > 268 K, then compute rain rate over land, 

Else rain rate = 0 mmlhr. 

Else if SSMII measurement is over the ocean, then 

If -1 1.7939 - .02727 Twv + .09920 Tm > 0 K, then 
compute rain rate over ocean, 

Else rain rate = 0 mmlhr. 

Else SSMA measurement is coastal; flag as indeterminate. 

RECOMMENDED ALGORITHMS: 

If a rainfall rate over land is to be computed, then use 

If a rainfall rate over the ocean is to be computed, then use 

Alternatively, if the 85.5 GHz channel data are unusable,then over land apply 

R = exp(-17.76849 - .09612 Twv + .I5678 TBIgv) - 1.0 mmlhr, 

and over the ocean use 

If any of these formulae yield a rainfall rate less than zero, then set the rain rate equal to 0 
mmlhr. 



11.7 APPLICATION OF THE ALTERNATE ALGORITHM TO TROPICAL CYCLONE 
DATA 

The suggested retrieval formulae presented in Section 11.6 are applied to SSWI data from 
an overpass of Hurricane Florence at 00:21 GMT on September 10, 1988. 

Hurricane Florence originated in a stagnant frontal zone over the south central Gulf of 
Mexico and began to move northward and strengthen on September 9th. A middle-tropospheric 
trough to the west interacted with the vortex to stimulate strong convection over the center and 
an area of midlevel subsidence and drying to the west. 

Just prior to the SSWI overpass (00:Ol GMT) Florence reached its peak intensity, with 
a minimum pressure of 982 mb and maximum winds of 35 mls. The low level center was 
located just off of the Mississippi delta. The 6.7 micron water vapor imagery from GOES (not 
shown), indicated an influx of dry air into the circulation from the southwest. As a result, the 
convection indicated by the imagery of Figure 11.7 was weak and poorly organized, and had 
been decaying even before landfall. 

Florence's disrupted convection and steady forward motion at 6 m/s kept rainfall totals 
relatively small. Twenty-four hour amounts along the track ranged from 35 to 105 mm, and 
similar amounts fell in a secondary convective area over the Florida panhandle, well to the east 
of the center. The secondary circulation also spawned 9 tornadoes, and the rains, although not 
extraordinary for a tropical cyclone, added to the already swollen rivers to produce the worst 
floods in ten years on the two Florida panhandle rivers. Damage in Louisiana was confined to 
beach erosion and wind damage to trees and power lines. 

The 85.5 GHz horizontal and 19.35 GHz vertical channel SSMII data, which are utilized 
in the alternate retrieval algorithms, are presented in Figure 11.7a and b, respectively. Warm 
colors indicate areas of high microwave brightness temperature, whereas cooler colors correspond 
to areas of lower brightness temperature. Signatures of precipitation are identified as depressions 
in the 85.5 GHz horizontally-polarized brightness temperatures (Figure 11.7a). 

Over land the signal from precipitation is much smaller in the 19.35 GHz vertically- 
polarized channel. This is partly due to the fact that microwave scattering by raindrops is much 
weaker at 19.35 GHz, while the absorptionlre-emission signature of rain does not contrast greatly 
with emission by the land background. The relatively low spatial resolution of the 19.35 GHz 
channels also contributes to reduced rain response. However, since the ocean emits at a 
relatively low brightness compared to emission by rain at 19.35 GHz, the 19.35 vertical channel 
provides rain information for oceanic rain retrievals. The small band of precipitation about 500 
km southeast of New Orleans is identified as a region of increased microwave brightness in 
relation to the low emissivity ocean background in Figure 11.X 

The alternate algorithm retrieval of rainfall rates in Florence is presented in Figure 11.7~. 
Retrievals within about 25 km of the coast were filtered because the radiometer measurements 



Figure 11.7 See text for explanation. 



in the immediate vicinity of the coast contained significant contributions from both land and 
ocean backgrounds. The rain retrievals may be compared to the radar-derived rain rates obtained 
from the NWS WSR-57 station at Slidell, Louisiana in Figure 11.7d. The radar rainfall rates 
were corrected for range-dependent biases using a method suggested by Black [14]. Both the 
retrieved and radar-derived rain rate images utilize the same wlor enhancement. Purple indicates 
the 1 mmlhr rain rate threshold level. The wlor sequence from purple to red, orange, and 
yellow correspond to 1 mmlhr steps in the rain rate threshold. Regions where the rain rate 
exceeds 5 mmlhr are colored white. It should also be noted that the SSMII estimates are 
averaged rain rates over 625 km2 areas, whereas the radar-derived values are roughly 4 km2 
averages. 

Figure 11-7c and d indicate a good spatial correlation between SSMII retrieved rainfall 
rates and radar-derived rain rates within the observing range of the radar. The retrieval 
algorithm appears to overestimate rain rates just east of the Mississippi delta, while rain rates are 
underestimated in southwestern Alabama. Overall the SSMII rain rate estimates are reasonable 
in comparison with the radar, if one takes into account the spatial averaging effect of the 
radiometer. 

The SSMII rain rate estimates from the current alternate algorithm show a much better 
correspondence to the radar-derived rain rates than the previous "midlatitude" algorithm described 
in Volume 1 of the Final Report (see Figure 1 . 2 0 ~  on page 1-38). The improved performance 
of the current algorithm is attributed to the superior calibration of the Darwin and Kwajalein 
radars, upon which the algorithm is based. 

1 1.8 CONCLUSION 

Evaluations of the D-Matrix retrieval algorithm indicate that specified accuracies for 
derived rainfall rates are not being met over land at midlatitudes. Improvements in the algorithm 
based upon empirical relationships to the "ground truth" data set increase the accuracy of 
retrieved rainfall rates to within the requirement for both land and ocean situations. Application 
of the improved algorithm to tropical cyclone data yields rainfall rate estimates which are in 
reasonable agreement with coastal radar data. 

11.9 ACKNOWLEDGMENTS 

The authors would like to thank Jim Hollinger and Gene Poe of the Naval Research 
Laboratory, and the other members of the SSMII CALIVAL team for their support during all 
phases of this project. We would also like to thank the personnel of the British Meteorological 
Office and Dan Rosenfeld and David Wolff of NASAIGoddard Space Flight Center for supplying 
radar and raingage ground truth for this study. Tropical radar and raingage data from Kwajalein 
were supplied by Lynn Rose, Brian Momson, and David Brown of Aeromet, Inc. Radiative 
transfer model simulations were provided by Chris Kummerow of NASAIGSFC. We are grateful 
to Peter Dodge, Mike Black, and Mike Shoemaker of NOAA/AOML/Humcane Research 



Division, who provided the radar data for the Hurricane Florence case study. Also Chris Velden 
of the University of Wisconsin lent his expertise in the analysis of the Florence data sets. 

1 1.10 REFERENCES 

J. W., Wilson and E. A. Brandes, 'Radar measurement of rainfall - a summary," I U  
Amer. Meteor. SG, vol. 60, pp. 1048-1058, 1979. 

C. G. Collier, P. R. Larke, and B. R. May, "A weather radar correction procedure for 
real-time estimation of surface rainfall," &j&. J. R. Met. &, vol. 109, pp. 589-608, 
1983. 

L. J. JWan, p, Chicago: The University of Chicago 
Press, 324 pp., 1973. 

E. M. Sodano, "General non-iterative solution of the inverse and direct geodetic 
problems," Bulletin Geodes-, vol. 75, pp. 69-89, 1965. 

J. S. Marshall and W. K. M. Palmer, "The distribution of raindrops with size," L 
Meteor-, vol. 5, pp. 165-166, 1948. 

T. W. Harrold, E. J. English, and C. A. Nicholass, "The accuracy of radar derived 
rainfall measurements in hilly terrain,' J. R. Met. &, vol. 100, pp. 331-350, 
1974. 

R. W. Spencer, "Satellite passive microwave rain rate measurement over croplands during 
spring, summer, and fall," J, Climate and ABEL Meteor,, vol. 23, pp. 1553-1562, 1984. 

C. D. Kummerow, private communication, NASA/Goddard Space Plight Center, 
Greenbelt, MD, 1988. 

C. D. Kummerow, "Microwave Radiances from Horizontally Finite, Vertically 
Structured Clouds," Ph. D. Thesis, University of Minnesota, Minneapolis, MN, 146 pp., 
1987. 

R. W. Spencer, "A satellite passive 37-GHz scattering-based method for measuring 
oceanic rain rates,' J. Climate and @l, Meteo~, vol. 22, pp. 2095-2099, 1986. 

W. S. Olson, "Estimation of Rainfall Rates in Tropical Cyclones by Passive Microwave 
Radiometry," Ph.D. Thesis, University of Wisconsin, Madison, WI, 282 pp., 1987. 



[12] W. S. 0lson"Physical retrieval of rainfall rates over the ocean by multispectral 
microwave radiometry-application to tropical cyclones," 1, Geophvs. Ra, vol. !X, pp. 
2267-2280, 1989. 

[13] J. Simpson, R. F. Adler, and G. R. North, "A proposed Tropical Rainfall Measuring 
Mission satellite,' Met. &, vol. 69, pp. 278-295, 1988. 

[14] M. Black, private communication, NOAA/AOML/Hurricane Research Division, Miami, 
PL, 1988. 



SECTION 12 

CLOUD AMOUNT VALIDATION 

Gerald W. Felde 
Geophysics Laboratory (AFSC) 

Hanscom AFB, MA 





12.0 CLOUD AMOUNT VALIDATION 

12.1 CLOUD AMOUNT ALGORITHMS 

The Hughes Aircraft Company developed two algorithms for estimating cloud amounts 
(percent cloud coverage) from SSWI brightness temperatures. One is applicable over land 
backgrounds, the other over snow. Hughes has not been tasked to develop a cloud amount 
estimation algorithm for ocean backgrounds. In the initial formulation of the cloud amount 
algorithms, it was recognized that polarization characteristics at 85 GHz (i.e, vertical brightness 
temperature minus horizontal brightness temperature) should provide much of the information. 
Simulated values of 85 GHz polarization for a variety of land and snow background conditions 
for clear and cloudy cases were calculated. For a given background condition, a smaller 85 
GHz polarization value was associated with a cloudy atmosphere than with a clear atmosphere 
[I]. It was desired to retrieve information on the cloud coverage from the SSWI as near as 
possible to the resolution of the approximately 45 km x 45 km area used by the Air Force 
Global Weather Central's (AFGWC) Real-Time Nephanalysis (RTNEPH) automated global cloud 
analysis. So it was decided to base each individual estimate of cloud amount on a 3 x 3 array 
of adjacent 85 GHz samples with an all-channel scene at its center. Figure 12.1 shows this array 
of 85 GHz footprints. The array is framed by a 39 km (along scan) x 41 km (across scan) 
rectangle. One 37 GHz footprint is also inside this rectangle. Each 85 GHz footprint is 14 km 
(along scan) x 16 km (across scan) and the 37 GHz footprint is 29 km (along scan) x 36 km 
(across scan). Further analysis also indicated a cloud signature in the 37 GHz brightness 
temperatures for land and snow-covered backgrounds. 

In the final developmental phase of the cloud amount algorithms, for both land and snow 
backgrounds, simulated 37 and 85 GHz (vertical and horizontal polarizations) brightness 
temperature values for clear and overcast conditions were calculated by Hughes Aircraft 
Company [2] using the Air Force Geophysics Laboratory's RADTRAN atmospheric transmission 
model [3]. For snow backgrounds, its depth was varied between 4 and 20 cm in increments of 
2 cm. Surface emissivity for each snow depth value was calculated using the dry snow model 
of Ulaby and Stiles [4]. For land backgrounds, soil moisture was varied using values of 3, 5, 
12, and 20 percent. Surface emissivity for each value of soil moisture was calculated using 
Fresnel equations modified by the Choudhury et al. [5] correction factor of 0.6 to take into 
account surface roughness effects. 

Interpolated values of 37 and 85 GHz simulated brightness temperatures were combined 
for each of the two surface backgrounds, using a random number generator to create clear fields 
of view (all nine 85 GHz footprints clear - 0 percent cloud cover), one 85 GHz footprint 
overcast (any one of the nine - 11.1 percent cloud cover), etc. through all nine 85 GHz 
footprints overcast (100 percent cloud cover). Regression coefficients were then calculated from 
the simulation results [2]. For snow backgrounds, a four-step regression produced a percent 
cloud amount estimation equation that accounts for 95.9 percent of the modeled variance. An 
error analysis of this estimation equation determined an rms error of the estimated percent cloud 
amount of 3.2 percent. While for land backgrounds, a four-step regression produced a percent 



Figure 12.1 Area for Which a Single SSM/I Percent 
Cloud Amount Value is calculated 



cloud amount estimation equation that accounts for 77.9 percent of the modeled variance. An 
error analysis of this estimation equation determined an nns error of the estimated cloud amount 
of 7.8 percent. 

The final operational version of the two cloud amount algorithms developed by Hughes 
Aircraft Company [6, 71 are: 

where CAS is the percent cloud amount over snow; T37v and Tm, are the 37 GHz brightness 
temperatures - vertical and horizontal polarizations respectively; ETUv and ETÃ‡s are the sum 
of the nine 85 GHz brightness temperatures - vertical and horizontal polarizations respectively, 
at an all-channel scene and its eight surrounding 85 GHz scenes. The coefficients are c,, = 
-189.5000, C, = -0.9710, C, = 0.7400, C, = -0.1987, C, = 0.3678. 

where CAL is the percent cloud amount over land. The coefficients for the land equation are: 
c0 = -638.9000, C, = -1.7050, C, = -0.2868, &, = 0.7457. 

Note that the vertically polarized 37 GHz brightness temperature is not used in the cloud 
amount over land equation. This was the final brightness temperature in the four-step regression 
analysis, and it was found that its inclusion only provided an infinitesimal improvement to the 
estimation accuracy [2]. 

It is possible for either of the two cloud amount equations to produce results that are 
physically meaningless. To account for this, an "out-of-limits" flag is included in both 
algorithms. Out-of-limits is arbitrarily assigned to cloud amount estimates less than -20% and 
greater than 120 % . 

No cloud amount estimates are made for flooded or vegetative backgrounds. A dynamic 
determination of one of nine possible land types is made for each SSWI data point tagged as 
having a land background [I]. Simulations indicated that the SSMII would be unable to detect 
clouds over vegetated land because the high water content provides the same type of signature 
as a cloud. Flooded land is treated the same as an oceanic background. Since no SSWI cloud 
amount algorithm for water backgrounds was required, these scenes are ignored. 

12.2 VALIDATION METHODOLOGY 

Manual cloud cover estimates were used to validate the automated SSMII algorithm 
results. The manual analyses were performed on 3 nmi resolution visible (0.5 to 1.0 
micrometers) and infrared (IR, 10 to 13 micrometers) imagery data obtained from the 
Operational Linescan System (OLS) sensor which is on board the same spacecraft as the SSMII. 
The resolution of the OLS is considerably better than that of the SSWI. Therefore, the ability 



of the OLS to resolve clouds within the SSWI footprints is excellent. Since the swath width of 
the OLS is twice that of the SSMII and the sensors are on the same satellite, all SSMII cloud 
amounts will have spatially coincident OLS cloud amounts. However, there will be a small 
temporal difference because the sensors have different scan geometries. The OLS scans in a 
straight line perpendicular to the satellite subtrack, while the SSMII scans aft of the satellite with 
a constant angle of 45 degrees between satellite nadir and the antenna beam. For a given SSWI 
scan, the OLS scan line that contains the center point of the SSMII scan will be obtained 137 
seconds prior to the SSMII scan, while the OLS scan line that contains the endpoints of the 
SSM/I scan will be obtained 87 seconds prior to the SSWI scan. 

The Air Force Interactive Meteorological System (AIMS) at the Geophysics Laboratory 
(GL) was used as the test bed for this validation study. AIMS is a distributed system of mini- 
and micro-computers that was developed to support research in remote sensing at GL. 
Functional capabilities include the ability to receive, manage, store, display and interact with 
meteorological observations, radar and satellite data. Two identical image processing work 
stations are available on the system. (See reference [8] for a complete description of AIMS.) 
To obtain cloud truth data sets, a formalized procedure has been developed that involves 
interactive display and manipulation of the imagery on an AIMS image processing work station 
[9]. To assist in image interpretation, interactive image processing techniques are used to 
provide geometric and radiometric enhancements to the data and to provide for multispectral 
display. For example, an interactive piecewise linear stretch algorithm produces a different 
contrast enhancement over a number of selected brightness ranges in a monochrome (single . - 
channel) image by modifying the response of the display over each range. An input device on 
AIMS such as a mouse or graphics tablet is used to select interactively each brightness range and 
control the enhancement slope. 

When performing a manual cloud analysis on OLS visible and infrared data, a number 
of display options are available. The most useful is a multiple image display generated by 
dividing the monitor into quadrants. Each quadrant can contain a separate monochrome or 
multispectral OLS image, each with a different enhancement. The OLS images have not been 
remapped; they are displayed in their original scan format to make use of the full resolution of 
the data. The analyst selects an area-of-interest on one target image to make a cloud boundary 
determination. This can often be a very small sub-region of the image. An iterative threshold 
blanking technique requires the analyst to select an intensity level that separates the clear and 
cloud regions in the area-of-interest. Regions below the threshold level are displayed as a color 
shade while the area above is displayed as a gray shade. This makes the boundary distinct while 
maintaining the detail below and above the threshold. The analyst then interactively raises or 
lowers the threshold until the proper level is obtained. The procedure is repeated until the entire 
target image has been classified. Two products are generated from this procedure, the first is 
a grayshade image that retains the original image characteristics above the cloud threshold and 
is black below, and the second is a binary image that simply delineates the cloud boundary from 
clear background. The first is used during the interactive threshold blanking process for visual 
comparison against reference images. The second is used for comparison with SSWI algorithm 
results. Software was written to determine automatically the points in the OLS binary cloud 



truth digital imagery data base corresponding to each area for which a single SSMII cloud 
amount value is generated. This software also calculates the corresponding OLS cloud amounts 
by summing up the number of cloudy OLS pixels and dividing by the total number of OLS 
pixels within each SSMII cloud amount area. 

12.3 CASE STUDY DESCRIPTIONS 

Four case study scenes were selected for the cloud amount algorithm validation study. 
The scenes contain several different cloud conditions and surface background types. For each 
case, the OLS data were first earth located and a binary synthetic image containing cloud truth 
information was generated using the techniques described in the previous section; then the SSWI 
and OLS cloud amounts were compared. 

Case 1 - Southern Africa: SSMJI and OLS data were collected for the late afternoon 
DMSP pass (satellite is descending) on 14 January 1988 over the southern part of Africa. 
Figure 12.2 depicts the area of coverage. This area includes desert, wet lands, cultivated 
regions, and forests. The OLS visible (Figure 12.3) and infrared (Figure 12.4) images show 
substantial areas of cumulus clouds. The OLS imagery data were manually analyzed using the 
interactive techniques described in the previous section to obtain a synthetic, binary image of 
the cloud cover (Figure 12.5). This was compared to the SSWI algorithm results (Figure 12.6). 
These results will be discussed in detail in Section 12.4. 

Case 2 - Central United States: This scene used the data from the morning DMSP pass 
on 14 January 1988 ascending over the central U.S. from coastal Gulf of Mexico up through 
Minnesota and the Dakotas into southern Canada. The northern quarter of the image was snow 
covered. The predominant cloud types were stratus and stratocumulus. The OLS visible 
imagery data were not usable in the manual cloud truth analysis because of the low light level 
in this scene during the early morning satellite crossing time. 

Case 3 - Eastern United States: The data for this case is from the morning DMSP pass 
on 14 March 1988 ascending over the eastern third of the U.S. from Florida across the 
southeastern states up over the Great Lakes into southern Canada. The predominant clouds are 
stratus and stratocumulus which are associated with an upper level storm centered over southern 
Lake Huron. The northern part of the scene is snow covered and is approximately 10% of the 
total area of the scene. The OLS visible imagery data were of limited use in the manual cloud 
truth analysis because of light levels being too low for a sharp image. 

Case 4 - North West South America: The data for this case were obtained from the same 
satellite pass as Case 3 but during an earlier time frame when the ascending satellite was still 
south of the equator. This scene contains northern Peru, Ecuador, Columbia, and Central 
America. The dominant cloud feature is a massive MCC (Mesoscale Convective Complex) over 
most of Ecuador. The main types of land surface backgrounds are rain forests and mountains. 
For this case, the light levels were high enough for the OLS visible data to be useful in the 
manual cloud truth analysis. 



Figure 12.2 OLS Coverage for Case 1 



Figure 1 2 . 3  OLS V i s i b l e  Image f o r  Case 1 

Figure 1 2 . 4  OLS Infrared Image f o r  Case 1 



Figure 12.5 Binary Synthetic Cloud Cover Image Derived 
from OLS Visible and IR Imagery for Case 1 

Figure 12.6 SSM/I Cloud Amount Image for Case 1 
Black: Out-of-Limits 
Gray Shades: Increasing Cloud Amount from 
Dark to Light Gray Shades 



12.4 CASE STUDY RESULTS 

The cloud amount values calculated by the SSWI algorithms for the four case study 
scenes described in Section 12.3 were statistically compared to the cloud truth values obtained 
from the manual interactive computer analysis of OLS data. The results are presented in Table 
12.1 and are stratified for land and snow backgrounds for each case. This is done to assess the 
performance of each of the two separate SSM/I cloud amount algorithms; one for land 
backgrounds and one for snow backgrounds. Recall SSMII cloud amounts are not calculated 
when the land background is vegetated or flooded. Also, there is no Hughes SSWI cloud 
amount algorithm for oceanic backgrounds. 

Table 12.1 contains the mean, standard deviation about the mean, and the range 
(minimum and maximum) for both the SSMII and the corresponding OLS derived cloud 
amounts. N in this table is the number of SSWI cloud amounts in the allowed range of -20 to 
120 percent. Values outside this range are tagged as "out-of-limits" and are listed in the last 
column of the table. The root-mean-square differences (rms) and the linear correlation 
coefficient (r) between the individual OLS and SSWI cloud amount values are also given. The 

I TABLE 12.1 

11 STATISTICAL COMPARISON OF SSM/I AND OLS TRUTH CLOUD AMOUNTS 

- 
Case - 

1 

Background 

Land 

Land 

Snow 

Land 

Snow 

Land 

OLS 1 92.3 



rms value is a measure of the amount of error between the individual SSMJI and wrresponding 
"truth" OLS cloud amount values. An nns value of zero would mean that there is no error (i.e., 
all corresponding SSWI and OLS cloud amounts are equal). The correlation coefficient is a 
measure of the linear relationship between a set of SSWI and OLS cloud amount distributions. 

There are n o  snow covered land backgrounds for Case 1 (Southern Africa). The mean 
OLS and SSMII cloud amounts are close, but the OLS standard deviation is twice as large as 
that of the SSWI and the maximum SSWI value is considerably smaller than that of the OLS. 
The large rms and negative correlation coefficient indicate that the SSWI algorithm has serious 
deficiencies. 

There are both snow-free and snow-covered land backgrounds for Case 2 (Central United 
States). For land backgrounds, the SSMII mean and standard deviation are much smaller than 
the OLS values. The maximum SSWI value is about half that of the OLS. The rms for land 
backgrounds is quite large and the correlation coefficient is close to zero, indicating the two 
results are unwrrelated. For snow backgrounds, the mean and standard deviations are 
comparable. However, the rms value is large and r is close to zero which shows again there 
is very little relationship between the OLS and SSWI cloud amounts. 

Case 3 (Eastern United States) like Case 2 has both snow-free and snow-covered land 
backgrounds. The SSMII mean and standard deviation are much smaller than those for the OLS 
over land backgrounds and the maximum SSMII value is about two-thirds that of the OLS. Also 
for land backgrounds, the rms is large and the correlation coefficient is close to zero. The 
SSWI and OLS mean and standard deviation are comparable for snow backgrounds, but the 
minimum SSMII cloud amount is considerably larger than that of the OLS. Also, the rms value 
is large and the r value is close to zero. 

There are no snow covered land backgrounds for Case 4 (North West South America). 
The SSWI mean and standard deviation values are much smaller than those for the OLS and the 
maximum SSMJI value is two-thirds that of the OLS. The rms value is large and the r value 
is close to zero. 

The values of the root-mean-square difference between the OLS and SSMII cloud 
amounts for both land and snow backgrounds for all four cases are large. This indicates that 
the cloud amount estimates calculated by both SSWI algorithms are poor. All the values of the 
linear correlation coefficients indicate that no significant linear relationship exists between the 
SSWI and OLS cloud amounts. For land backgrounds, the mean and maximum OLS and SSWI 
cloud amounts show the SSMII values are consistently lower than the OLS values. The number 
of cases flagged as out-of-limits over land backgrounds for Cases 2 and 3 are very large. The 
significance of this is addressed in Section 12.6. 



12.5 OTHER RESULTS 

The frequency distribution of SSM/I-derived cloud amount values were examined for 
several orbits. All the distributions were found to have similar characteristics. Table 12.2 
shows the distribution for revolution 655 which occurred on 5 August 1987. The results in the 
table are stratified into land and snow backgrounds and shown are the total number of SSM/I 
cloud amount values calculated and the percentage of the total number that are within various 
categories. For both backgrounds, there are few cloud amount values greater than 40% and 
many cloud values tagged as "out-of-limitsn. 

The 37 and 85 GHz brightness temperatures for all "out-of-limits" cases for revolution 
655 were put into the SSMII cloud amount equations to determine the specific numerical values 
generated by the algorithms. Table 12.3 shows the total number of land background 
"out-of-limits" cases with SSM/I cloud amount values within various categories. It also shows 
this information for snow backgrounds. For both backgrounds, all the values are negative. 

TABLE 12.2 I 
SSM/I CLOUD AMOUNT VALUES (REV. 655 - 5 AUG 1987) 

TABLE 12.3 

OUT OF LIMITS VALUES (REV. 655 - 5 AUG 1987) 

Surface 
'Jh'e: 

Land 

Snow 

Number of 
cases 

965 1 

2269 

< -100% 

61 

0 

-100 to 
-50% 

11 

35 

-50 to -20% 

28 

65 

> 120% 

0 

0 



12.6 DISCUSSION 

In Section 12.4, a great number of "out-of-limits" cloud amount values over land 
backgrounds for Cases 2 and 3 were noted. The 37 and 85 GHz brightness temperatures for 
each of these occurrences, when put into the cloud amount equation, produced a negative cloud 
amount value. In Section 12.5, there were many "out-of-limits" cloud amount values over both 
land and snow backgrounds during revolution 655. Again the actual numerical values produced 
by the SSWI equations for all these "out-of-limits" occurrences were negative. From Equations 
12.1 and 12.2 (Section 12.1), negative values occur when the 85 GHz polarization values 
actually observed are significantly larger than those predicted by the simulations. McFarland 
[lo], in a similar study of the SSMII algorithm used to determine specific land surface types, 
noted that the actual SSMII polarization values at 19 and 37 GHz are often larger than the 
simulated values. 

Based on the preflight simulations discussed in Section 12.1, the accuracy of the SSWI 
algorithms were expected to be good. However, the statistical comparisons of OLS derived 
"truth" cloud amounts to SSMII cloud amounts for four cases containing a variety of cloud types 
and land backgrounds (see Section 12.4) indicate that both algorithms have no skill at estimating 
the correct cloud amounts. Even if the SSWI algorithms had shown some skill, their use would 
have been limited because of the large percentage of "out-of-limits" values they generate. 

The small correlation coefficients for all four cases indicate no relationship between 
SSWI and OLS cloud amount values. In other words, most of the individual SSWI cloud 
amount values were either considerably larger or smaller than the corresponding OLS cloud 
amount values. For example, compare the OLS cloud truth image (Figure 12.5) to the SSWI 
cloud amount image (Figure 12.6) over the land areas for Case 1 (Southern Africa). In the 
SSWI image, the black represents "out-of-limits" values, the dark gray represents values of 0 
to 40%, and the light gray represents values of 40 to 74%. Recall 74% was the maximum 
SSMII value for this case (see Table 12.1). The cloud coverage in the OLS cloud truth image 
ranges from clear to overcast; most of the clear to partly cloudy areas do not match the dark 
gray areas (0 to 40% cloud amounts) of the SSMII image; most of the partly to mostly cloudy 
areas do not match the light gray areas (40 to 74% cloud amounts) of the SSWI image; and 
there are no overcast areas in the SSMII image. 

Recall that loss of polarization at 85 GHz over land and snow backgrounds in the 
presence of cloud was the basis of the SSWI cloud amount algorithm. It is concluded from the 
preceding discussion that there is no discemable cloud signature from 85 GHz polarization 
values over land and snow backgrounds when no distinction is made between the many different 
types of land and snow surfaces which occur in nature. Several factors probably contributed to 
the failure of the technique. The SSWI cloud amount algorithm was based entirely on simulated 
data. This was necessary since no previous microwave satellite sensor had measured radiation 
at frequencies as high as the 85 GHz channel on the SSMII. All simulations contain inherent 
errors due to an incomplete modeling of the atmosphere and the earth surface. During the 
algorithm development, several simplifications were made. For snow backgrounds, only one 



type of cloud (stratus/stratocumulus), one type of temperature profile (mid-latitude winter), one 
type of humidity profile (mid-latitude winter), and one type of precipitation state (rain-free) were 
used in the simulation calculations. This was also the case for land backgrounds, where the 
cloud type was stratus/stratocumulus, the temperature and humidity profiles were both 
mid-latitude summer, and the atmosphere was rain-free. It should be noted that the stra- 
tus/stratocumulus cloud used for the land and snow background simulations were identical. The 
cloud layer was between 0.5 and 2 km in altitude with a liquid water content 0.15 g ld .  Clouds 
exhibit a wide range of liquid water contents, altitudes, and thicknesses which can be quite 
different from the one set of values used in the simulations. A more complete set of simulations 
containing a better representation of atmospheric temperature and humidity profiles, cloud 
conditions, precipitation states, and land and snow surface types could have produced more 
realistic expectations. 

In order to obtain a more complete quantitative understanding of the effects of different 
types of clouds over various land backgrounds on 85 GHz microwave radiation, additional 
simulated brightness temperatures were calculated from the Geophysics Laboratory's RADTRAN 
atmospheric transmission model [3]. Table 12.4 contains the simulated 85 GHz values (in 
degrees K) for the horizontal polarization (85H) for several cloud conditions and land types. 
In this set of simulations, the following conditions were selected and kept constant: land surface 
skin temperature of 290 K, rain-free, and mid-latitude summer temperature and humidity 
profiles. Table 12.5 is similar to Table 12.4, but contains the values of the difference between 
the 85 GHz brightness temperatures for the vertical and horizontal oolarizations C85D = 85V 

TABLE 12.4 

SIMULATED 85H BRIGHTNESS TEMPERATURES (K) FOR 
VARIOUS CLOUD AND LAND TYPES UNDER MID-LATITUDE 

I SUMMER ATMOSPHERIC CONDITIONS 

First focus on the first three land types listed in Tables 12.4 and 12.5. For a given land 
type, the 85H value is larger for any of these three cloud types compared to the no cloud 
condition. An exception is for the cumulus condition, where for dry soil and light vegetation 
surfaces, the 85H value is smaller compared to that for the no cloud condition. The total 
columnar liquid water content increases while the 85D values decrease from left to right. Three 
of the five possible RADTRAN cloud models are included in these tables. The smallest and 
largest columnar cloud water amounts available in the RADTRAN cloud models are the stratus/ 



TABLE 12.5 

SIMULATED 85D BRIGHTNESS TEMPERATURES (K) FOR 
VARIOUS CLOUD AND LAND TYPES UNDER MID-LATITUDE 

SUMMER ATMOSPHERIC CONDITIONS 

LandICloud Types No cloud Stratudstratocu Altostratus Cumulus 

stratocumulus and cumulus clouds, respectively and are included in these tables. For moderate 
(and greater) density vegetation, 85D values are zero for all cloud conditions because the 
horizontal and vertical emissivity of vegetation are equal. This indicates that at 85 GHz clouds 
are not detectable over land covered with moderate or greater density vegetation. It is noted in 
these two tables that the 85H surface emissivity values increase and that the difference between 
the 85V and 85H surface emissivities decrease from top to bottom. Thus for a given cloud 
condition, the 85H values increase while the 85D values decrease from top to bottom. An 
exception is for the cumulus cloud condition where the 85H values are constant and the 85D 
values are all zero no matter what the land type which indicates that the cumulus cloud is 
completely masking the surface. 

Another set of RADTRAN simulations were generated for the same set of cloud 
conditions and land types as those presented in Tables 12.4 and 12.5. However, in this set of 
simulations, colder and drier conditions were used - a land surface skin temperature of 280 K 
and mid-latitude winter temperature and humidity profiles. The 85H results are presented in 
Table 12.6 and the 85D results are presented in Table 12.7. These results are similar to those 
for the mid-latitude summer profiles (Tables 12.4 and 12.5). The main difference for a given 
cloud condition and land type is that the 85H values are smaller and the 85D values are larger 
for the winter simulation set compared to the summer. It was also noted when the rain-free 
condition used for the two sets (summer and winter) of simulations was changed to light or 
heavier intensity rain that all 85D values were zero for any of these cloud types and surface 
conditions indicating that the rain completely masks the surface. 

Tables 12.4 - 12.7 illustrate that clouds over land backgrounds are expected to have a 
distinct effect on the upwelling 85 GHz microwave radiation. However, the quantitative effect 
depends on the land surface type, type of cloud (columnar liquid water), the presence or 
absence of rain, and the atmospheric temperature and humidity profiles. For a cloud amount 
algorithm to be feasible, all these factors would have to be accounted for which was not the case 
in the Hughes cloud amount algorithm. Climatological temperature and humidity profiles might 
provide sufficient temperature and water vapor information. If not then perhaps radiosonde 



measured profiles could be used. The presence or absence of rain can be determined by using 
the SSMII rain screening algorithm developed by the DOD SSMII land parameters validation 
team. Also, this team developed land surface classification and soil moisture algorithms which 
produce reliable land surface type and soil moisture information. The 85 GHz RADTRAN 
simulated values show that the ability to identify cloud types with 85 GHz SSWI data, even 
when the land surface type and atmospheric profiles are known, does not appear to be likely 
(except for cumulus covering the entire footprint), especially when cloud types are mixed andlor 
only partially cover the footprints. However, the maximum and range of the 85D values over 
the various cloud types for a given land type and temperature and moisture profile (see Tables 
12.5 and 12.7) are both small compared to the 85D value for the no cloud condition so that the 
maximum or average 85D value for all five possible RADTRAN cloud types would probably 
be adequate for use in the development of a reasonably accurate SSWI cloud amount algorithm. 
An SSWI cloud amount algorithm possibly is feasible over land surfaces that are homogeneous, 
except for surfaces covered with moderate or greater density vegetation. The development of 
a new SSMII cloud amount algorithm using the recently developed SSWI algorithms for land 
surface classification, soil moisture, and rain screening should be explored. 

TABLE 12.6 

SIMULATED 85H BRIGHTNESS TEMPERATURES (K) FOR 
VARIOUS CLOUD AND LAND TYPES UNDER MID-LATITUDE 

WINTER A1 IOSPHERIC COND1 

Stratudstratocu 

243.4 
260.5 
261.8 
269.4 

Altostratus Cumulus 

249.7 245.8 
245.8 

261.5 245.8 
245.8 

I TABLE 12.7 

SIMULATED 85D BRIGHTNESS TEMPERATURES (K) FOR 
VARIOUS CLOUD AND LAND TYPES UNDER MID-LATITUDE 

WINTER ATMOSPHERIC CONDITIONS 

LandICloud Types 1 No cloud 1 Stratudstratocu Altostratus 1 cumulus 



It is expected for snow backgrounds that its water equivalent and type of snow surface 
(dry, wet, stage of ripening, etc.), type of cloud, presence or absence of precipitation, and the 
atmospheric temperature and humidity profiles will have to be considered for the possible 
development of a cloud amount algorithm. A new cloud amount algorithm for snow 
backgrounds should be explored when the DOD SSWI land parameters validation team's snow 
type and water equivalent algorithm is perfected. 

12.7 OTHER CONSIDERATIONS 

12.7.1 m m s i t e  SSMII and OLS Imagery 

The powerful capability of AIMS to generate a false color composite multispectral image 
proved to be fruitful in regards to OLS and SSWI imagery data. There are three color guns 
on AIMS; red, green, and blue. The intensity of each color gun is controlled by 8 bits. 
Individual channels of a composite image are simultaneously directed to one of the three color 
guns. In regions of the image where the response of each channel is approximately equal; the 
red, green, and blue color intensities will be about the same and produce a shade of gray. In 
other regions where the spectral response of one channel is different than another, the image will 
be a distinctive color depending on the relative strength of the signal at the individual 
wavelengths. A useful display over land backgrounds uses the OLS visible channel, IR channel, 
and SSMJI horizontally polarized 85 GHz channel to drive the red, green, and blue guns, 
respectively. The resulting false color composite image (an example is shown in Figure 1.22 in 
Volume I of this report) shows low altitude water clouds in red because of their high visible 
reflectivity (large red contribution) and warm IR and microwave brightness temperatures (small 
green and blue contributions); thick cirrus clouds as yellow because of their high visible 
reflectivity and cold IR brightness temperatures (large red and green contributions) but warm 
microwave brightness temperatures (small blue contribution); thin cirrus clouds as green because 
of their cold IR brightness temperatures (large green contribution) but weak visible reflectivity 
and warm microwave brightness temperatures (small red and blue contributions); and strong 
convective cells as white because of their high visible reflectivity and cold IR and microwave 
brightness temperatures (large red, green and blue contributions). Thus, combining OLS visible 
and IR data with SSMII brightness temperature data yields useful cloud type information. This 
false color composite technique also works over ocean backgrounds but the colorlcloud type 
interpretation is not the same as for land because the ocean surface microwave, visible, and IR 
signatures are different. 

It is noted that well developed convective clouds have a distinct signature at 85 GHz over 
land backgrounds. The 85 GHz brightness temperatures are very low under these conditions. 
The horizontally polarized 85 GHz brightness temperature image for Case 1 (Southern Africa 
- see Section 12.3) is shown in Figure 12.7. In this image, the brightness temperatures decrease 
as gray shades go from dark to light. The white areas indicate where the coldest brightness 
temperatures are located (minimum brightness temperature in this image is 136 K), and 



Figure 12.7 Horizontally Polarized 85 GHz Brightness 
Temperature Image for Case 1 



comparison of this image to the OLS visible (Figure 12.3) and IR (Figure 12.4) show that these 
cold 85 GHz horizontally polarized brightness temperatures are within the overcast convective 
regions. This cold signature of well developed convective clouds at 85 GHz has also been 
observed by the author in several other SSMII brightness temperature images in various locations 
and seasons over several different surface backgrounds including oceans. The 85 GHz 
horizontally polarized brightness temperature for a well developed convective cloud can be very 
low. For example, a value of 95K was observed for an evening DMSP pass over India on 28 
June 1987. The cold signature is due to large raindrops and ice particles in the upper portions 
of well developed convective clouds which scatter the upwelling radiation emitted from the lower 
portions of the clouds out of the SSMII's field of view. This was first observed by Wilheit [ll] 
with a 92 GHz radiometer flown on an aircraft. 

12.7.3 Clouds over Ocean 

The ocean surface in general is much more homogeneous, and has much lower 
microwave emissivity and much greater microwave polarization than land which indicates that 
clouds (as well as other atmospheric parameters) should be more easily discemable over ocean 
compared to land in microwave imagery data. Examination of several SSMII 37 and 85 GHz 
brightness temperature images over oceanic backgrounds containing various cloud types (which 
were verified with coincident or near-coincident visible and IR satellite data and synoptic data) 
indicated that all cloudy regions, no matter what the cloud type (except for cirrus), were evident. 
As discussed above, the cloud signature is very cold at 85 GHz for convective clouds containing 
large raindrops and ice particles. Other clouds have a warm brightness temperature signature 
at both 37 and 85 GHz compared to the cold brightness temperature signature due to the low 
emissivity ocean surface and relatively small atmospheric attenuation in the absence of clouds. 
The emissivity of clouds at 37 and 85 GHz is significantly greater than that of the ocean surface. 
In the 85 GHz horizontally polarized brightness temperature image shown in Figure 12.7, the 
dark bands (warm brightness temperature) over the ocean in the bottom of the image are cloudy 
areas as can be verified by comparison with the corresponding OLS visible (Figure 12.3) and 
IR (Figure 12.4) images. Additionally, it is seen that the 85 GHz brightness temperature 
polarization values (85V - 85H) over the ocean in cloudy regions are much smaller than those 
for clear regions. 

In order to obtain a better quantitative understanding of the effects of clouds over ocean 
backgrounds on microwave radiation, simulated 85 GHz brightness temperatures were calculated 
from the Geophysics Laboratory's RADTRAN atmospheric transmission model [3]. Table 12.8 
contains the simulated 85 GHz brightness temperature values (in degrees K) for the horizontal 
polarization (85H) and the difference between the vertical and horizontal polarizations (85D = 
85V - 85H) for several cloud types (all available cloud models in RADTRAN) with conditions 
of no rain and light rain (5 mmlhr at the surface). In this set of simulations, the following 
conditions were selected and kept constant: 85 GHz vertical and horizontal emissivity values 
typical for a calm ocean surface; ocean surface temperature of 290 K; and mid-latitude summer 
temperature and humidity profiles. Under rain-free conditions, the 85H values when any of the 
cloud types is present is considerably warmer than the cloud-free condition. Also, the 85D 



values when clouds are present range from 0 to 14 K which is much smaller than the value for 
the cloud-free condition. The total columnar cloud liquid water value increases from top to 
bottom in the table. As the cloud water increases, the 85D value decreases indicating that the 
ocean surface emission and reflection of 85 GHz radiation is more heavily attenuated by the 
atmosphere. Under light rain conditions, the 85D values are all zero, indicating that the ocean 
surface is completely masked by the atmosphere at 85 GHz. This is also true under moderate 
and heavy rain conditions (not shown in the table). 

I TABLE 12.8 

SIMULATED 85H AND 85D BRIGHTNESS TEMPERATURES (K) FOR SEVERAL 
CLOUD TYPES OVER A CALM OCEAN SURFACE UNDER MID-LATITUDE 

SUMMER ATMOSPHERIC CONDITIONS 

Table 12.9 shows the 85H values in degrees K calculated with RADTRAN using various 
atmospheric temperature and humidity profiles under clear and cloudy (stratus/stratocumulus 
cloud with no rain) conditions for calm and rough ocean surfaces. The atmospheric profiles 
become colder and drier from top to bottom in the table. For a given atmospheric profile over 
a calm ocean surface, the 85H brightness temperature is larger for cloudy than for clear 
conditions. This is also true over a rough ocean surface, but the amount of brightness 
temperature increase with cloud is approximately half that as for the calm surface. Also for a 
given atmospheric profile and cloud condition, the 85H brightness temperature is larger over a 
rough surface than a calm one. For each surface and cloud condition, the 85H brightness 
temperatures decrease and the amount of increase of brightness temperature with cloud compared 
to no cloud becomes greater as the atmosphere becomes colder and drier. 



I TABLE 12.9 

SIMULATED 85H BRIGHTNESS TEMPERATURES (K) FOR CLEAR VS. CLOUDY 
UNDER VARIOUS ATMOSPHERIC CONDITIONS OVER CALM AND 

ROUGH OCEAN SURFACES 

Atmos. Ocean 
Profiles Temps. 

tropical 300 

mid-lat. 290 
summer 

sub-arctic 285 
summer 

mid-lat. 280 
winter 

sub-arctic 275 
winter 

(Calm Sfc.) 
no 

cloud 

(Rough Sfc.) 
no 

cloud 

(Calm Sfc.) 
stratus1 
stratocu 

(Rough 
Sfc.) 

stratus1 
stratocu 

Table 12.10 shows the 85D values in degrees K calculated with RADTRAN for the same 
conditions as those for the 85H values shown in Table 12.9. For a given atmospheric profile 
over a calm ocean surface, the 85D value is smaller for cloudy than for clear conditions. This 
is also the case over a rough ocean surface, but the amount of decrease of the 85D value with 
cloud is approximately half that as for the calm ocean. Also for a given atmospheric profile and 
cloud condition, the 85D value is larger over a calm surface than over a rough surface. The 
85D values increase for a given surface and cloud condition and the amount of decrease of 85D 
with cloud compared to no cloud becomes greater as the atmosphere becomes colder and drier. 

The simulated 85 GHz RADTRAN values given in Tables 12.8 - 12.10 indicate that 
clouds have a distinct effect on the upwelling 85 GHz microwave radiation at the top of the 
atmosphere over oceanic backgrounds. The amount of columnar liquid water (type of cloud) has 
an important influence on the 85 GHz brightness temperatures. Other important factors are the 
degree of roughness of the ocean surface, columnar water vapor (moisture and temperature 
profiles), and the presence or absence of rain. Other members of the DOD SSMII geophysical 



I TABLE 12.10 

SIMULATED 85D BRIGHTNESS TEMPERATURES (K) FOR CLEAR VS. CLOUDY 
UNDER VARIOUS ATMOSPHERIC CONDITIONS OVER CALM AND 

ROUGH OCEAN SURFACES 

Atmos. Ocean (Calm Sfc.) 
Profiles Temps. no 

cloud 

tropical 1 300 1 20.3 

mid-lat. I 290 1 29.1 
summer 

sub-arctic I 285 1 38.2 
summer 

mid-lat. 
winter 

sub-arctic 
winter 

(Rough Sfc) 
no 

cloud 

(Calm Sfc.) 
stratus1 
stratocu 

(Rough Sfc) 
stratus1 
stratocu 

parameter algorithm validation team have shown that these atmospheric and surface conditions 
can be determined from the SSMII data since they have developed SSWI algorithms for ocean 
backgrounds which calculate columnar cloud liquid water and water vapor, ocean surface wind 
speed (which is related to the surface roughness), and surface rain rates. Therefore, an accurate 
SSWI cloud amount algorithm for ocean backgrounds is plausible. Recall that Hughes Aircraft 
Company has not been tasked to develop one. However, Rubinstein [12], a member of the sea 
ice validation team, recently developed an SSWI cloud amount algorithm as a spin-off of her 
work. The accuracy of this algorithm requires validation. It is important to note that cirrus 
clouds are transparent at SSWI frequencies over all backgrounds and so any SSMtI cloud 
amount algorithm will lack cloud coverage information in areas containing only cirrus type 
clouds. 

12.7.4 Potential SSMII Contributions to the R m P H  Cloud 

The RTNEPH cloud analysis done at AFGWC uses conventional ground-based cloud 
observations, and OLS IR and visible satellite data. The RTNEPH produces operational global 
estimates of cloud cover, altitude, and type. (See Keiss and Cox [14] for a complete description 
of RTNEPH.) There is good potential to improve the RTNEPH analysis by incorporation of 
new algorithms which use SSWI data by itself and also in conjunction with other types of data. 



If the development and validation of new SSWI cloud amount algorithms over some 
types of land, snow, and ocean surfaces is successful, then these cloud amounts should be 
examined to determine if they are more accurate under certain or all situations than the 
RTNEPH cloud values determined from conventional observations, and IR and visible satellite 
data. For instance, there are few conventional cloud observations over the ocean and under 
certain common oceanic conditions it is difficult to detect clouds with IRsatellite data and if it 
is night time then novisible satellite data are available. An example is that often in the IR there 
is little contrast between stratocumulus clouds in the marine boundary layer and the ocean 
background in the presence of the commonly occurring temperature inversion in this layer. 

The extraction of cloud type information available from false color composite OLS and 
SSWI images described in Section 12.7.1 probably could be automated and incorporated into 
the RTNEPH analysis. If this can be done, then improvement to the cloud type portion of the 
RTNEPH analysis would probably result. 

Combined use of SShUI microwave data with OLS IR data for determination of cloud 
amounts over land backgrounds is promising. Savage et al. [13] have found that the expected 
surface IR brightness temperature for clear conditions over vegetated land backgrounds can be 
predicted from SShUI brightness temperatures with sufficient accuracy (rms of 2.5 K) to be used 
as input for a cloud analysis. The observed IR values are compared to the expected IR to 
estimate cloud. Observed IR values less than the expected IR indicate cloud. The regression 
equation used to estimate an expected surface IR value for clear conditions was developed from 
an analysis. of observed IR values in clear areas, using the SSMII 19 and 22 GHz channels as 
predictors. The two lowest frequency SSWI channels were used since most clouds are 
transparent at these frequencies. This method of comparing observed IR values to the expected 
surface IR temperature to estimate cloud is comparable to the technique presently used by the 
RTNEPH cloud analysis model at AFGWC. However,the RTNEPH estimates the expected IR 
temperature from surface air temperature reports for comparison to the observed OLS IR 
temperatures. The technique basedentirely onsatellite data iipotentially more accurate because 
there is error resulting from estimating IR background temperatures from the surface temperature 
report which is a shelter air temperature (several feet above ground level). Another advantage 
of the all-satellite technique is that it requires less data processing and produces more timely 
results. It is also noted that the SShUI land parameter validation team has developed algorithms 
for the determination of surface skin temperatures for several land types in addition to vegetated 
land which should be useful for estimation of IR background temperatures. 

The all-satellite technique is expected to be successful over all surfaces whose microwave 
emissivity is high and relatively constant. Vegetated land, as well as desert, have these 
emissivitv characteristics. However. snow. glacial. and ocean surfaces have low emissivities 
(high reflectivities). Savage et al. [13] found that IR brightness temperatures for clear conditions 
could not be accurately estimated from SSWI observations over snow-covered land backgrounds 
because of the properties of snow. However, they found that an approach (differing 
from the algorithm GL validated) based entirely on SShUI observations for recognition of clouds 
over snow showed good promise. They resolved a set of SSWI data which was stratified into 



cloudy and clear groups, into eigenfunctions and then formed a discriminant function. Only a 
few of the largest discriminant scores of the cloudy group overlapped with a few of the smallest 
discriminant scores of the clear group. Thus, the two groups were quite well distinguished. 

The SSWI is good at snow and ice cover detection because of the strong microwave 
signatures of these surfaces. Use of this timely and accurate information in the RTNEPH cloud 
analysis would improve it. The RTNEPH satellite data processor consists of two parts - one for 
OLS visible data and one for OLS IR data. The visible data processor is not allowed to make 
a cloud amount calculation over grid points where snow or ice cover is believed to be present. 
This is because cloud-free snow and ice covered areas have approximately the same brightness 
as clouds. The snow-cover data base is of particular concern. It is based on surface reports and 
climatology and may not represent the true snow cover condition over many gridpoints, 
especially in sparsely populated regions where the surface weather observing stations are far 
apart. If snow or ice is actually present when RTNEPH believes it not to be, then the visible 
data processor will be used and RTNEPH's estimates of cloud amounts will probably be too 
large. On the other hand, if snow or ice is really absent when RTNEPH believes it to be 
present, then the IR satellite processor will be used and low clouds, that are easily found by the 
visible processor, may be poorly analyzed. 

12.8 CONCLUSIONS 

The present Hughes SSWI cloud amount algorithms over land and snow backgrounds 
do not work because the variability of the land and snow surface types, cloud types, and 
atmospheric temperature and humidity profiles, and the presence or absence of rain were not all 
taken into account. An SSWI cloud amount algorithm possibly is feasible over land surfaces 
that are homogeneous, except for surfaces covered with moderate or greater density vegetation. 
The development of a new SSWI cloud amount algorithm using climatological temperature and 
humidity profiles and the recently developed SSWI algorithms for land surface classification, 
soil moisture, and rain screening should be explored. Also, a new cloud amount algorithm for 
snow backgrounds should be explored when the DOD SSWI land parameters validation team's 
snow type and water equivalent algorithm is perfected. 

Hughes Aircraft Company has not been tasked to develop an SSMII cloud amount 
algorithm over ocean backgrounds. Investigation to date indicates an accurate algorithm over 
ocean is plausible. In fact, an algorithm has recently been developed but requires validation. 
It is important to note that cirrus clouds are transparent at SSMII frequencies over ocean and all 
other backgrounds and so any SSMII cloud amount algorithm will lack cloud coverage 
information in areas containing only cirrus type clouds. 

SSMII data combined with other types of data and several SSWI geophysical parameter 
algorithms offer the opportunity for improvement to the Air Force's RTNEPH operational global 
cloud analysis. Cloud amount estimates from potential SSWI algorithms might prove to be 
more accurate in certain situations than those obtained from OLS data by the RTNEPH. The 
extraction of cloud type information available in color composite SSMII and OLS (visible and 



IR) imagery probably could be automated and incorporated into the RTNEPH analysis. Other 
promising SSMII contributions to the RTNEPH include improvements to its snow and ice cover 
data base and more accurate and timely estimation of expected IR temperatures for clear 
conditions over vegetated land, moist soils, desert, and arable land. 
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A.0 GEOLOCATION 

A. I INTRODUCTION 

The process of gwlocating SSMII pixels was investigated and described in detail by Gene 
A. Poe and Robert W. Conway in Section 6.0, Volume 1 of this report and also in [I]. In brief 
they found geolocation errors of the order of 20 to 30 km and discovered that approximately one 
half of this error was due to the use of a seven-day predictive ephemeris in data processing at 
Fleet Numerical Oceanographic Center (FNOC). This variable error was removed when the 
satellite ephemeris, contained in the down-link data stream, was used in place of the predictive 
ephemeris in the data processing beginning with revolution 10048 on May 31, 1989. Due to 
system testing the predictive ephemeris was used for short periods of time until revolution 10647 
July 12, 1989. Poe and Conway found indications that the remaining error of about +I- 13 km 
could be reduced to within specification of +I- 7 km by the use of a constant or slowly varying 
and predictable adjustment to the apparent spin axis of the SSMII in the geolocation software. 
This does not necessarily mean that the SSWI axis is misaligned with respect to the spacecraft, 
but only that it is possible to compensate by this means for some other error or errors in the 
overall system. They concluded that indications were that spacecraft attitude biases were not 
the main contributor to the remaining error. 

Their initial work to determine the software adjustment to the spin axis was hampered 
by the difficulty in obtaining the spacecraft ephemeris, matching it to the corresponding SSMII 
data and then recalculating the geolocation. It was necessary to wait until the satellite ephemeris 
was used in operational data processing at FNOC in order that a sufficiently large number of 
cases could be examined to ensure that the residual error was indeed constant and could be 
removed. This has now been done &d a constant software correction to the apparent spin axis 
has been determined which reduces the geolocation error to less than the DMSP SSMII 
geolocation accuracy specification of +I- 7 km. The procedure, data selection and results are 
described in the following sections. 

A.2 PROCEDURE 

The accuracy of the SSMII geolocation was determined by a visual comparison of SSWI 
85 Ghz horizontally polarized brightness temperature (85H) images with superimposed World 
Data Banks II (WDB2) coastlines on a color monitor. Incremental pitch, roll and yaw 
corrections were estimated by trial and error and the SSMII image geolocation repeated until the 
SSMII and WDB2 coastlines coincided. The WDB2 coastlines are believed to be accurate to 
better than 1 km over 90% of all identifiable shoreline features and introduced no significant 
error in the comparison. The 85H has a resolution of 13 km and is sampled each 12.5 km along 
scan. Successive scans are separated by 12.5 km. Interpolation of these data using the 
procedure developed by Poe [2] produced an additional three equally spaced samples between 
each original pair in the scan direction and an additional three scans between successive scans; 
a sixteen fold increase in data density. The regions selected were 20 degree by 20 degree boxes. 
This resulted in a pixel separation on the monitor of the geolocated 85H image varying from 



about 4.2 km at the equator to about 2.8 lan at high latitudes. The WDB2 coastline was one 
pixel wide on the monitor. It was generally possible to obtain agreement between the 85H and 
WDB2 coastlines to one pixel or about 3 to 4 km. The use of higher resolution on the monitor 
would not have improved this precision significantly. 

The 85H was chosen because it has the highest spatial resolution of any of the channels 
and a high brightness temperature contrast between landlwater boundaries. This contrast varied 
between about 50 and 100 K depending upon atmospheric conditions. Only images containing 
clear sharp landlwater boundaries not obscured by heavy clouds or rain were selected. The 
RMS noise output of the 85H was generally less than 1 K as shown in Figure A. 1 until about 
February 1990 when it began increasing. It increased to as much as 10 K before failing entirely 
in February 1991. Images with RMS noise up to 5 K were used resulting in a landlboundary 
signal-to-noise of from 10 to 100. Thus it was readily possible to locate the coastline in the 85H 
image to one fourth of a half power beam-width or about one pixel as stated above. 
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Figure A. I SSMII Delta T Noise 



Hughes Aircraft Company measured the antenna beam positions relative to bore-sight for 
all seven channels prior to launch on DMSP F-8. All channels were within 0.03 degrees of the 
85H except the 37H which was displaced by 0.07 degrees. This would result in relative shift 
of the two beams of about 2 km at the earth's surface. The co-registration was checked by 
overlaying the 85H and each of the other channel images. They were aligned to within better 
than 3 km; the accuracy of the measurement. 

The algorithm used to geolocate the 85H data with different pitch, roll and yaw offsets 
of the spin axis is fully described in Volume I of this report and in [I]. The computations used 
the satellite ephemeris position vectors stored approximately each minute in the TDR archival 
tapes produced at FNOC. These computations would normally not introduce significant error. 
However when the satellite ephemeris was incorporated into the SSMII processing at FNOC the 
ephemeris time was truncated to integer seconds. This error was not corrected &ti1 revolution 
17057 on October 9, 1990. The error was minimized by adding one half second to the truncated 
time resulting in an error of up to one half second in the geolocation computations. Since this 
is a timing error it primarily affects the intrack position and closely resembles a pitch error. A 
half second timing error is equivalent to a 3.3 km position error or about a tenth of a degree 
pitch error. 

Consideration of the above sources of error indicates that the geolocation procedure used 
here to obtain pitch, roll and yaw corrections for a software realignment of the apparent SSMII 
spin axis to correct geolocation errors is accurate to better than 6 km. This is consistent with 
the geolocation accuracy specification of +I- 7 km. 

A.3 DATA SELECTION 

The images for coast line comparison were selected to allow possible systematic 
variations due to the time of year, sun angle, latitude, longitude and ascendingldescending orbits 
to be examined. This requires data covering a range of more than 5000 orbits. In order to use 
only data processed with the satellite ephemeris only data from revolutions following number 
10048 were selected. The noise of the 85H channel was below 1 K until about revolution 13500 
on January 30, 1990 after which it began increasing; see Figure A.I. Therefore it was 
necessary to use some images with noise as large as 5 K. Data from 203 orbits during the 
period June 2, 1989, revolution 10070, to July 29, 1990, revolution 16036, were used for 
coastline comparisons. The center latitude and longitude of the 20 degree by 20 degree regions, 
the number of ascending and descending revolutions, the pitch, roll and yaw corrections which 
eliminate the geolocation error and the Julian dates of the images are given in Table A. I. The 
distribution of the data as a function of the day of year, center latitude and center longitude is 
given in Figures A.2, A.3 and A.4 respectively. The sun angle for revolutions 10000 through 
16000 is shown in Figure A.5. 



TABLE A .  1 
GEOLOCATION REGIONS 

ENGLAND 

JULIAN DAY JULIAN DAY 
1989 1990 

217,229,270, 20,53,81,121, 
277,307,342 128,145,166 

232,248,280, 97,132,162, 
285,325,355 167,185 

232,243,255, 30,56,142, 
324,327 143,166 

335 79,120,147, 
18 2 



TABLE 

TOTAL 
DES 

5 

L. I con 

AVG 
PITCH 

-0.2 

JULIAN DAY JULIAN DAY 
1989 1990 

270,338 05,27,92,143, 
144 

219,263 26,31,173 

265,305,345, 96,112,153 
345 

CENTER 
LAT/LON 

INDIA 

ISTHMUS OF PANAMA 

COLOMBIA 

WEST COAST AFRICA 

BRAZIL 

EAST COAST AFRICA 

NEW GUINEA 

PERU 

MADAGASCAR 

SOUTHERN AFRICA 

AUSTRALIA 

NEW ZEALAND 

SOUTH AMERICA, 
FALKLAND ISLANDS 

SOUTH AMERICA, 
FALKLAND ISLANDS 



Figure A.2 Julian Day Distribution of 
SSMII Geolocation Data 

Figure A.4 Longitude Distribution of 
SSMII Gwlocation Data 
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Figure A.5 Sun Angle Variation For 
SSWI Geolocation Data 

A.4 RESULTS 

The pitch, roll and yaw corrections which eliminate the geolocation error are shown as 
a function of revolution number for all 203 cases in Figures A.6, A.7 and A.8 respectively. 
There is almost no variation in the value of the roll or yaw correction. The pitch correction 
shows a greater variation than either the roll or yaw with a standard deviation of 0.11 degrees. 
This is not surprising since timing errors result in geolocation errors very similar to those caused 
by pitch errors. A timing error of 1 second produces a 6.6 km intrack gwlocation error which 
is roughly the same as a 0.18 degree pitch error. Thus the 0.11 degree pitch error resembles 
a 0.6 second timing error. As mentioned earlier the truncation of the ephemeris time for all of 
the data used here results in dining errors of up to 0.5 seconds. There is just a hint that the 
pitch error may be slightly larger (more positive) at larger sun angles when the sensor is wanner 
but no sun angle dependent correction is necessary or justifiable. The pitch correction is also 



independent of latitude and longitude and is the same for ascending and descending passes as is 
shown in Figures A.9 through A.12. Thus a constant correction is possible. 

YAW CORRECTION 

Figure A.8 SSWI Geolocation yaw 
Correction 
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Figure A.7 SSWI Geolocation Roll 
Correction 

Figure A.9 SSWI Geolocation Pitch 
Correction as a Function of Latitude 

The pitch, roll and yaw correction to the apparent SSWI spin axis which brings the 
SSWI geolocation within the specification of +I- 7 km is: 

Pitch = -0.21 degrees 
Roll = -0.10 degrees 
Yaw = +0.70 degrees. 

'The sign of these coefficients is according to the DMSP convention which is shown in Figure 
A.13. The geolocation shift imposed by this realignment as a function of scan angle is shown 
in Figure A.14. In the figure the positive cross track direction is to the port side and the 
positive in track direction is aft of the spacecraft. The bottom curve is the scan track with no 
wrrection and the curve displaced towards the upper left is the shifted scan track resulting from 



Figure A. 10 SSM/I Geolocation Pitch 
Correction as a Function of Longitude 

Figure A. 12 SSMII Geolocation Pitch 
Correction For Descending Revolutions 

Figure A. 11 SSM/I Geolocation Pitch 
Correction for Ascending Revolutions 
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Figure A. 13 DMSP Reference Axes 

the above correction. The magnitude of the geolocation shift in both the cross track and in track 
direction is given in Figure A. 15 as a function of scan angle. Note that the total geolocation 
shift ranges from about 8 to 15 km. The change in incidence angle resulting from the 
realignment of the spin axis as a function of scan angle is given in Figure A.16. The 
calculations in Figure A. 14 through A. 16 are with respect to a spherical earth. They will change 
slightly in detail with latitude for an oblate spheroidal earth model and with the rotation of the 
argument of perigee of the slightly elliptical F-8 orbit. In order to determine the magnitude of 
the incidence angle variation for an oblate spheroid model of the earth and the extremes of the 
elliptical orbit, calculations were made for revolutions 15106 and 15563 for which the argument 
of perigee is 90 and 0 degrees respectively. The maximum change of incidence angle during 
a single scan was 0.30 degrees. The maximum incidence angle variation over the two orbits was 
0.88 degrees. It should be noted that a change of 0.72 degrees results for these same orbits for 
a zero pitch, roll and yaw correction. The primary cause of the incidence angle variation, for 



Figure A. 14 SSMII Geolocation Shift Due to Spin Axis Realignment 

Figure A. 15 SSMII Geolocation Shift In and Orthogonal to Scan Direction 
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this alignment correction, is the variation of spacecraft altitude which ranged from 837 to 885 
km over these orbits. Incidence angle variations of +I- 0.5 degrees can result in brightness 
temperature changes of +I- 1 K or more and refined environmental retrieval algorithms must 
take the actual incidence angle at each scan position into account. 

Figure A. 16 SSM/I Incidence Angle Change Due to Spin Axis Realignment 

It is possible to geoloate any of the archived FNOC processed F-8 SSMII data to an 
accuracy of +I- 7 km using the above spin axis correction. For those data prior to July 12, 
1989 when the satellite ephemeris was not used in the FNOC processing a new ephemeris must 
be generated. This is possible using, for example, orbital elements from the Space Surveillance 
Center (SSC) of the United States Space Command (formerly NORAD), Cheyenne Mountain, 
Colorado or the Naval Space Surveillance System (NAVSPASUR), Dahlgren, Virginia and their 
respective orbital prediction programs. The difference in geolocation obtained by using the 
satellite ephemeris and that using NAVSPASUR orbital elements and the PPT7 ephemeris 
prediction program for revolution 10121 is given in Figure A.17 as a function of time. The 
error is at most 6 km with a standard deviation of 2.5 km. This accuracy is not strongly 
dependent upon the number of revolutions over which the ephemeris is propagated. The mean 
and standard deviation of the geolocation difference between the two ephemerides for nine 
different comparisons is given in Figure A.18 as a function of the number of revolutions 
propagated. The mean difference of all nine comparisons is 2.3 km with a standard deviation 
of 1.4 km. 



Figure A. 17 DMSP - PPT7 Ephemerides Figure A. 18 Mean Error of PPT7 - OLS 
for Revolution 10 12 1 Ephemerides for Various Propagations 

It should be noted that a yaw correction may result from a timing or other error in the 
start of scan signal and need not be an alignment error of the spin axis. The pitch and roll 
corrections of -0.21 and -0.10 degrees respectively are entirely consistent with the Hughes 
antenna beam alignment error specification with respect to the spacecraft of +I- 0.2 degrees in 
all three axes. Therefore the above correction is consistent with the SSMII design alignment 
tolerances but does not necessarily mean that the SSMII axis is misaligned with respect to the 
spacecraft. However it is possible, by using this correction to the apparent spin axis, to 
compensate for alignment error or other errors in the overall system and geolocate the SSMII 
to an absolute accuracy of +I- 7 km. 

An example of the improvement in geolocation resulting from the use of this software 
correction of the spin axis alignment is given in Figure A.19. The 85H image of the southern 
part of South America obtained from revolution 11 155 on 17 August 1989 without the correction 
is shown on the left and with the correction on the right. The red areas are primarily lower 
elevation land. The light and dark blue areas in the Andes are due to snow. The light blue 
areas in the vicinity of the Falkland Islands are heavy clouds. Note the excellent agreement 
between the 85H image and the WDB2 coastlines and lakes throughout the image. It should be 
noted that this uniform spatial fidelity can only be obtained with the three angle spin axis 
correction and cannot be duplicated by a simple two dimensional translation of the image. 

Accurate geolocation is very important for the delineation and recognition of small 
atmospheric and terrain features. This is especially true if successive passes over a specific 
region are to be averaged for the study of slowly varying phenomena. It is also essential for 
algorithm development and validation; particularly in the case of precipitation, sea ice edge and 
land surface type. Now that the geolocation problem has been solved and the methodology for 
determining the correction established the accurate geolocation of SSMII's on future DMSP 
satellites can be readily accomplished. 



Figure A.19 85H Image of South America Obtained From Revolution 11155 on 17 August 
1989. With No Correction on the Left and With the Spin Axis Correction of Pitch = -0.21 deg, 
Roll = -0.10 deg, and Yaw = 0.70 deg on the Right. 
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