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1. Introduction

The following document was prepared for the CSU NOAA/NCDC SSMI/SSMIS Satellite
Data Stewardship project and describes how to obtain geolocation information for a
conically scanning sensor such as SSM/l or SSMIS. It is assumed that the following are
known for each pixel:

1. Spacecraft position vector

2. Spacecraft velocity vector

3. Time

4. Spacecraft attitude and sensor mount angles

In the case of the SSMI/SSMIS Satellite Data Stewardship project, the spacecraft
position/velocity vectors were calculated for the first and last pixels for each scan using
the NORAD Two Line Elements (TLEs) with the SGP4 code and these values were
added to the Basefiles. The spacecraft position and velocity vectors were linearly
interpolated across the scan to obtain values at each scan position. The adequacy of
the interpolation technique was tested by calculating values from the SGP4 code for the
center of the scan and comparing with the interpolated value. This test showed errors
of a few centimeters, which is more than adequate for the purpose of geolocation for
SSMI/SSMIS. Spacecraft attitude was estimated from a coastline analysis, with slightly
different sensor mount angles being used for each feedhorn of SSMIS.

The following describes in detail the calculation of:

1. Pixel geodetic longitude and latitude

2. Satellite zenith angle (Earth Incidence Angle) and satellite azimuth angle

3. Solar beta angle, sun glint angle, solar zenith and azimuth angles and the time
since eclipse

4. Spacecraft ephemeris (spacecraft longitude, latitude and altitude)

Some of the more detailed working and explanation can be found in the appendices.

2. Calculation of Pixel Geodetic Latitude and
Longitude

The process for calculating the pixel latitude and longitude starts with the calculation of
the Instantaneous Field-Of-View (IFOV) matrix in sensor coordinates. Several rotations
are required to obtain the IFOV in Geocentric Inertial (GCI) coordinates. First there is
the sensor-to-spacecraft rotation that obtains the IFOV relative to the spacecraft. Next
there is the spacecraft-to-orbital (geodetic nadir pointing) rotation that obtains the IFOV
relative to the path of the spacecraft. Finally, there is the orbital-to-GCI rotation that
obtains the IFOV in GCI coordinates. With the IFOV in GCI coordinates, the
intersection of the IFOV with the oblate spheroid Earth is calculated and this is then
used to get geocentric, then geodetic latitude and longitude.
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2.1 Specification of the IFOV

The Instantaneous Field-of-View (IFOV) vector D is calculated in coordinates relative to
the sensor. Several aspects of the instruments design must be known in order to
construct the IFOV including the number of pixels per scan, the scan start angle, the
angle between each scan position and the direction of pointing relative to the satellite

(forward or backward).
\\\\\

D, '

S

Figure 1. Simple scan geometry for IFOV in sensor coordinates.

Figure 1 shows the scan geometry for a conically scanning instrument. The IFOV
vector in sensor coordinates Ds is calculated as

sin(6, + A, )cos(¢, +A,)
D =| sin(6, +A,)sin(¢, +A,) (1)
cos(6, +A,)

where 6, is the nominal elevation angle (half cone angle), ¢, is the scan angle, ), ¢ is
the and 4, are additive offsets to the nominal elevation and scan angles. The scan
angle is calculated from

¢a = ¢O + kaAscan (2)

where ¢y is the scan start angle, k, is the scan number (ranges from one to the number
of scans) and Agcan is the angle between scan positions.
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2.2 Calculation of the spacecraft attitude matrix A

The spacecraft attitude rotation matrix A gives the mapping to go from spacecraft
coordinates to nadir pointing coordinates. The spacecraft attitude rotation matrix is
calculated using an Euler rotation based on some known (or estimated) attitude offset
angles in the directions of pitch, roll or yaw, denoted respectively by 6,, 6, and 6,. For
convention, a positive pitch is in the “nose-up” direction, positive roll is in the “bank-left”
direction and positive yaw is to the right, with the z-axis pointed towards the Earth as
shown in Figure 2. Each of these offsets represents a different rotation matrix denoted
as Ap, Arand A, respectively and give by

1 0 0
A =0 cosﬁp —sinﬁp

0O sin Hp COS Hp

cosd. 0 sinf,

A = 0 I 0
-sin6, 0 cos6O, | (3)

cosHy —sinHy 0 -
A = sinHy cosHy 0
0 0 1

These three matrix rotations are combined to form A. Since rotations in three
dimensions do not commute, the rotation sequence must be specified by the user with
the first rotation (preferably) being the largest. For instance, if the yaw is the largest
correction, then a 3-2-1 rotation order would be employed. Assuming a 3-2-1 rotation
order, the spacecraft attitude rotation matrix A is given by

A=A AA, @
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+ve Pitch +ve Roll +ve Yaw

Figure 2. Directions of positive pitch, roll and yaw.

2.3 Calculation of the sensor alignment matrix S

The sensor alignment rotation matrix S gives the mapping to go from sensor
coordinates to spacecraft coordinates. The sensor alignment rotation matrix is
calculated using an Euler rotation based on some known (or estimated) sensor
alignment angles in the directions of pitch, roll or yaw. These offsets are relative to the
sensor and correspond directly to the pitch, roll and yaw directions if the attitude of the
spacecraft is perfectly aligned (ie: spacecraft pitch, roll and yaw adjustments are all
zero).

The sensor alignment rotation matrix S is calculated in exactly the same way as the
spacecraft attitude rotation matrix, but with the sensor offsets rather than the attitude
offsets. Additionally, the spacecraft attitude rotation matrix does not change by channel,
but the sensor alignment rotation matrix can change based on separate feedhorn
alignment (such as with SSMIS). The sensor alignment rotation matrix must therefore
be calculated for each feedhorn.

2.4 Interpolation of the spacecraft position and velocity
vectors

The basefiles contain the spacecraft position and velocity vectors for the start and end
of the active scan. These values are then linearly interpolated to each pixel position
across the scan. Each dimension is interpolated separately. Interpolation weights are
calculated using time.

2.5 Calculation of the nadir to GCI rotation matrix N

The nadir-to-GCl rotation matrix M gives the mapping to go from nadir pointing
coordinates to geocentric inertial (GCI) coordinates. Section C2 gives the details of how
to obtain the z-axis of the nadir-to-GCI rotation matrix, which does not have a closed
form solution. The calculations used here follow those from Patt and Gregg (1994) that
have accuracy of around 0.3 arcseconds for a 700km orbit.
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The components of the nadir vector M, come from (C17), (C20) and (C21)

-—Px f’/ \/Pj +f2(P2+P}) _
M. =|-P, f’/ \/Pj +f2(P2+P?)

(5)
-P. / \/Pj + f2(P2+P2)
where
| > R (1-f) +|P|-R,
fr=(i-g,) - el )‘P‘ ®

such that Py, P, and P, are the components of the spacecraft position vector, fis the
flattening factor for the Earth ellipse, f, is the flattening factor for the ellipse described in
section C2, Ry, is the mean Earth radius (R»,~6371) and |P| is the magnitude of the
vector P.

The y-axis component of M is estimated using the spacecraft velocity vector V. The
vector T is defined as normal to the orbit plane (the z-x plane) such that

T=M_xV (7)
The y-axis component of M is then given by
T./m
M, =T,/ ®
T./m
where Ty, T, and T, are the components of the vector T.
Finally, the x-axis component of M is estimated from the z and y-axis components
M, =M xM, (9)
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The nadir-to-GCl rotation matrix is then constructed by combining these
M=[Mx My MZ] (10)

2.6 Calculation of the IFOV vector in GCI coordinates

The sensor alignment, spacecraft attitude and nadir to GCI rotation matrices are used to
convert the IFOV in sensor coordinates D to the IFOV in GCI coordinates. The sensor
alignment rotation matrix can be used to convert a vector from spacecraft to sensor
coordinates, so the transpose of this matrix is required to go from sensor to spacecraft
coordinates. In a similar way, the spacecraft attitude rotation matrix can be used to
convert a vector from nadir to spacecraft coordinates, so the transpose of this matrix is
required to go from spacecraft to nadir coordinates. Finally, the nadir to GCI rotation
matrix can be used to convert from nadir to GCI coordinates. The IFOV in GCI
coordinates D; is therefore obtained by pre-multiplying Ds by the three rotation matrices

D = MATSTDS (11)

2.7 Intersection with Oblate Earth

Next, the intersection of the IFOV in GCI coordinates D; with the Earth is calculated to
find the target position vector G in GCI coordinates (see Figure 3) and the distance
between the satellite and the ground target d.

The vector for the target position can be found directly from the spacecraft position
vector P and the IFOV vector D; (both already in GCI coordinates)

P +dD,,
G=|P +dD, 12)
P, +dD,
The equation for an ellipsoid in standard Cartesian coordinates is
x> y2 Z2
—+——+—F= 1 13
2 b ol (13)

For an oblate spheriod Earth a=b=Rg which is the equatorial radius of the Earth and
c=Rp which is the polar radius of the Earth. Using the definition of the Earth flattening
factor Rp =(1-f)RE, substituting these into the above equation and rearranging gives

X2+y2+22/<1—f)2 =Ré (14)
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A quadratic equation is found by substituting the components of G into (14), expanding
out all brackets and rearranging in terms of d

D:+D: D? 2P.D, +2P.D, 2PD.
tx21y+122d2+ xtx2y1y+ zzlzd
R; R, R; R,
P2 +P2 P2 (15)
x—2y+_22_1 =0
R; R,
(15) can be solved using the factorization of ad*+bd+c=0 that is given by
d —b=+b* -4dac
= (16)

2a

If there are two real solutions for d, the smaller one is the required value of d. If there is
only one solution, the line of sight is tangent to the ellipsoid. If there is no real solution,
the line of sight is missing the ellipsoid.

a) | b)

=

Figure 3. Diagram showing the spacecraft position vector P, the IFOV
vector D; and the target position vector G.
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2.8 Calculation of Greenwich Hour Angle

The Greenwich Hour Angle (GHA) serves to rotate the inertial coordinates to an Earth-
fixed coordinate system. The geodetic longitude as calculated in the inertial frame (GCI
coordinates) would coincide with the vernal equinox, so the GHA is required to adjust
the geodetic longitude to the current orientation of the Earth. The details of the
calculation of the GHA are given in section C3.

2.9 Calculation of geodetic latitude and longitude

The calculation of the geodetic latitude and longitude is given in section A1. The
geodetic latitude is given by (C3) as

4 G,
2 2 2
(1- 1) \/Gx +G’
It is recommended that the atan2 function be used to calculate the arctan so as to

ensure the answer is in the correct quadrant. The longitude in inertial coordinates is
given by (C1) as

0, = tan 17)

G

=tan”'| =
O, G

X

(18)

although this must be adjusted to Earth fixed coordinates. This adjustment is achieved
using the following

(19)

G
¢ =tan”' Ey - GHA

X

where ¢ is the geodetic longitude of the pixel in Earth fixed coordinates and GHA is the
Greenwich hour angle for the current pixel time.

2.10 Calculation of satellite zenith and azimuth

In order to calculate the satellite zenith (aka Earth Incidence Angle) and azimuth angles,
it is necessary to first determine the local zenith (up), north and east vectors (Figure 4a).
The satellite zenith angle is the angle between the local up vector and the pointing
vector and the azimuth angle is the angle between the projection of the pointing vector
on the surface and the local north vector (fig. 4b) where positive azimuth angle is
clockwise when viewed from above.
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The local up vector represents the vector normal to the Earth’s surface at a given point.
It is analogous to the nadir M., which was calculated as part of the nadir-to-GClI rotation
matrix, but with M replaced by L, and P replaced by G

_43f/JGj+f1Gj+GQ
L, = 43f/JG§+f%Gj+GQ
_-Ji/JGf+fﬂ@ﬁ+Cﬁ)

(20)

where f’is now simply

f=0-f) (21)

The local east vector is normal to both the local up vector and the z-axis. It can
therefore be found as

L - ZxL, -
E 22
Z xL,|
The local north can then be found as
L,=L, xL, (23)
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Figure 4. Diagram showing (a) the local zenith (up), east and west
vectors on Earth’s surface relative to the GCI frame and (b) the zenith
and azimuth angles relative to the pointing vector D.

The zenith and azimuth angles can now be calculated using the local vectors and a
vector from the pixel to the satellite, which is the negative of the pointing vector (fig. 4)
D.,=-D. The components of this vector can be found as the dot product (ie: the scalar
projection) of D, on the local up, north and east vectors

d, =D, *L,
d,=D, L, o4)
dE = Dn * LE
Following the diagram in fig 4b, the zenith and azimuth angles can be expressed as
[ 12 2
- (25)
U
and
-1
¢ =tan (dE/dN) (26)

In both cases, the atan2 function should be used for calculation so as to ensure that the
answer is in the right quadrant.
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3. Calculation of Solar angles

3.1 Computation of the Sun vector
The computation of the Sun vector in GCI coordinates is given in section C4.

3.2 Solar Beta Angle

The solar beta angle is the angle of elevation of the Sun in the orbit plane as shown in
Figure 5.

\_ /

Figure 5. Diagram of angles associated with the solar beta angle.

To calculate the solar beta angle, first calculate the unit orbit normal in GCI coordinates

PxV

B=
TXV\ (27)

Next, calculate the projection of the unit orbit normal on the Sun vector
b=Be*S (28)

where S’ is the normalized Sun vector in GCI coordinates. Finally, the solar beta angle
is found as

Page 14



CDR Program FCDR (SSM/I and SSMIS) Technical Report

B, =90 - cos™'b (29)

3.3 Solar zenith and azimuth

The solar zenith and azimuth are calculated in the same way as the satellite zenith and
azimuth but with the pointing vector D; replaced by the Sun vector.

3.4 Sun Glint angle

The Sun glint angle at any pixel location on the Earth is the angle between the satellite
direction and the surface reflected Sunlight direction.

L, /
L
' . S ’
L I8 DI// _zxaxLU
D/ 4
<7 | /
oS
/ N \
AL \
// Q ’ \
/// 6’ r D | \\\
/ \
/ ’b// \ )
/ oy

Figure 6. Angles required to obtain the Sun glint angle.

In order to obtain the Sun glint angle several other angles must first be known in a
common coordinate system (GCI in this case) including the Sun vector Sun (section
3.1), the pixel location vector G (12), the pointing vector D; (11) and the local vertical
vector Ly (20). Figure 6 shows some of the angles required to get the Sun glint angle.
All of the vectors must be unit vectors, which is denoted by a dash.

First, the projection of the local vertical unit vector onto the pointing unit vector is
calculated as

a=L, *D, (30)

Conceptually, this used to construct a right angle triangle as shown in fig 6b. The
reflected pointing vector is then

rDl.' = Dl., — 2aLU’ (31)
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After normalizing the reflected pointing vector, the Sun glint angle 6, is found (as shown
in fig 6¢) from the Sun vector at the pixel location (pixXSun=Sun-G) as

Qg = piXSllll ¢ I’Di (32)

3.5 Time since eclipse

The time since eclipse is useful for assessing solar heating issues with a sensor where
information on how long a spacecraft has been in direct sunlight or shadow can be used
to derive corrections.

The first step is to calculate the GCI-to-Orbital rotation matrix O. The orbital coordinate
system is explained in section B3 and is geocentric nadir pointing. The z-axis is aligned
with the spacecraft position vector P

0. =-P/|P| (33)
The y-axis is normal to the z-axis and the velocity vector V
_0.xV
' ‘OZ X V‘ (34)
The x-axis is then simply
0,=0,x0, (35)

Finally, the GCI-to-Orbital rotation matrix is

0o=[0, 0, 0] -
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b)

Orbital Plane (Z-X)

\  Z(nadir)

-

Figure 7. Diagrams of (a) alternate method for obtaining solar beta angle
and (b) method for obtaining phase of orbit midnight.

The solar beta angle can be calculated using an alternate method to that shown in
section 3.2. This method is more consistent with the calculations in this section, but
requires the GCI-to-Orbital rotation matrix. The Sun vector in GCI coordinates Sun is
used to calculate the Sun to spacecraft vector as

scSun, = Sun-P (37)

This is then rotated to the orbital frame using the GCI-to-Orbital rotation matrix as
shown in Figure 7a. The solar beta angle  can be calculated as

B= -sin'l(scSuny) (38)

Next, the phase since orbit midnight (the point at which the Sun, Earth and Satellite are
aligned along a straight line) which is the phase of the Sun in the orbital plane as shown
in Figure 7b

(39)
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a) b)

Figure 8. Diagrams showing angles used to calculate (a) Earth angular
radius and (b) orbit phase for eclipse entry/exit.

Figure 8a shows a diagram of the Earth angular radius p as seen from the spacecraft.
This model assumes a spherical Earth with Earth radius R that must be known at the
current point. Wertz (1978; Eq. 4.14) gave a simple expression for the Earth radius at a
given geodetic latitude 6, (the spacecraft latitude in this case)

R=R,(1- fsin’0,) (40)

The Earth angular radius p as seen from the spacecraft is then a function of the Earth
Radius and the spacecraft altitude h

R
P = sin'l( ) (41)
R+h

Next, the orbit phase for eclipse entry/exit is calculated as shown in fig 8b. This is
essentially the difference between the Earth angular radius and the solar beta angle and
gives a measure of the angular distance between eclipse entry/exit based on orbit
midnight. The orbit phase for eclipse entry/exit is

(42)

COS
¢, = cos‘l(—p)

cosf3
Next, the angular orbit rate is calculated. The angular orbit rate requires is calculated
from the velocity vector perpendicular to the position vector, which is slightly different to
the velocity vector. The velocity vector therefore undergoes a correction outlined in
Figure 9 so as to obtain the correct orbit rate. First, the position and velocity vectors are
unitized. Second, the angular separation between these two vectors is calculated as
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0 =cos'(P'*V)

(43)
Third, the magnitude of the velocity perpendicular to the position vector is found as

‘Vp‘ =|V|sin6
Finally, the orbit rate is given by

(44)

(45)

Figure 9. Diagrams showing the process used to correct the velocity
vector and calculate the orbit rate.

The angle since eclipse entry can then be estimated as the phase from orbit midnight
(i.e. how far is the spacecraft from the mid-point of Earth shadow) plus the phase of
eclipse exit (i.e. how long since orbit midnight). If this angle is negative, then it should
have 360° added to it. The time since eclipse entry is therefore

. b0,

w

SC

(46)
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4. Calculation of spacecraft ephemeris

The spacecraft ephemeris for SSM/I consists of spacecraft latitude, longitude and
altitude at each scan time. These are calculated using the same technique as was used
to calculate the pixel position, but with a simplified pointing vector.

The spacecraft latitude and longitude are defined at the point on Earth closest to the
satellite, which is found by considering a vector normal to the surface that extends to
the satellite. The pointing vector in sensor coordinates is thus

DS=[O 0 1] -

The nadir to GCI rotation matrix is required to rotate Ds to GCI coordinates. This is
calculated using the technique in section 2.5 with the position and velocity vectors for
the scan time. The pointing vector in GCI coordinates is then found as

D, =MD (48)

The intersection with the oblate spheroid is done using the technique in section 2.7 and
the distance between the satellite and the ground point given in (16) is the satellite
altitude.

The Greenwich Hour Angle is calculated as in section 2.8 and is used to calculate the
spacecraft latitude and longitude using the same method outlined in section 2.9

Appendix A: Constants and satellite values

A1. Constants used in calculations

Earth equatorial radius: Re = 6378.137 km

Earth polar radius: Rp = 6356.755 km

Earth mean radius: Rm = 6371 km

Earth flattening factor: f=1/298.257 (dimensionless)

Earth rotation rate: we = 360/86400 = 7.29211585494x10° s™

Table A-1: Earth Constants
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A2. Standard SSM/I parameters

Number of pixels per scan: 128 high-res; 64 low-res

Angle between scans: 0.8°

Time between scans: 1.899 s high-res; 3.798 s low res
Scan cone angular radius: 45°

Start scan angle: -51.0°

Total rotation spanned for scan: | 102.4°

Active scan duration: 1.899%0.8*127/360 = 0.5359 s
Sampling frequency: 4.22 ms

Table A-2: SSM/I Scan Parameters

Note: SSM/I was generally mounted so that it viewed behind with the exception of F8,
which viewed forward.

A3. Standard SSMIS parameters

Number of pixels per scan: 180 high-res; 90 low-res

Angle between scans: 0.8°

Time between scans: 1.899 s high-res; 3.798 s low res
Scan cone angular radius: 45°

Start scan angle:

Total rotation spanned for scan: | 143.2°
Active scan duration: 1.899*0.8*179/360 = 0.7554 s

Sampling frequency: 4.22 ms
Time bias for first pixel:

Table A-3: SSMIS Scan Parameters
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Appendix B: Reference frames and time scales
B1. GCI

Geocentric Inertial (GCI; alternatively known as Earth Centered Inertial or ECI)
coordinates have their center at the center of the Earth. The z axis is in line with the
rotation axis of the Earth. These are celestial coordinates, so the x-axis is fixed as the
point where the plane of Earth’s orbit around the Sun crosses the prime meridian,
known as the vernal equinox. The y-axis is then normal to the z and x axes. One issue
with this coordinate system is that it is not truly inertial because the coordinate system is
not fixed relative to the position of the stars (this is the phenomenon of the precession of
the equinoxes). For this reason, a reference time is needed to define the position of the
vernal equinox, which is the approach taken here, but this can also be handled by using
true-of-date coordinates where corrections are made for each time. This problem must
be incorporated into Greenwich Hour Angle calculations that are not discussed here.

-axis

Figure B-1: Diagram of geocentric inertial coordinates

B2. Geodetic

The Geodetic coordinate system is the most commonly used system for describing
positions on the Earth (including latitude and longitude). They have the same basic
directions as GCI coordinates, but the center is no longer the Earth’s center. Rather,
the center is the point at which a vector normal to the surface intersects the x-y plane.
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X-axis

Figure B-2: Diagram of geodetic coordinates

B3. Orbital (geocentric nadir)

The z-axis points in the nadir direction, but is centered at the geocentric origin. The z-
axis is therefore aligned with the position vector. The x-axis is approximately in the
direction of travel of the spacecraft and the y-axis is normal to the orbit plane.

Figure B-3: Diagram of orbital coordinates

B4. Local horizontal

Local horizontal coordinates have their center at a given point on the Earth’s surface.
The N-axis points towards the direction of increasing latitude (North) and the E-axis
points towards the direction of increasing longitude (East). The z-axis points opposite
the geodetic nadir direction (ie: outward from Earth and normal to the surface).
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B5. Time

Several time definitions are required in order to calculate the geolocation. In particular,
the calculation of the Greenwhich Hour Angle (GHA) and the Sun vector are sensitive to
errors in the input time. The GHA affects the spacecraft and pixel longitudes and the
Sun vector affects the sun angles (solar zenith, azimuth, solar beta, Sun glint angle,
time since eclipse). It is important to note that relatively small errors in Dy can lead to
large errors; for example: a 10 second error in Dy might lead to an error in the longitude
of around 4km.

International Atomic Time (TAI; Temps Atomique International): measured as seconds
since January 1% 1958, with no leap seconds. The unit of TAl is seconds
on the geiod.

Terrestrial Time (TT): idealized form of TAI. TAIl can be estimated as TT=TAI+32.184
seconds.

Universal Time 1 (UT1): mean solar time. UT1 is counted from Oh (midnight) and is
affected by irregularities in Earth’s rotation rate.

Coordinated Universal time (UTC): equivalent to UT1 to within 0.9 seconds. Leap
seconds are irregularly added to correct UTC to match mean solar time
(UT1). UTC can be estimated as UTC=TAI+AUT where AUT is the number
of leap seconds.

Julian Day: number of days since 4713 BC January 1 12z (noon). Julian Days can be
measured on either the UTC or TT timescales.

J2000: a commonly used epoch for calculations. J2000 is equivalent to Julian Day
2451545.

If the date is known in year, month, day form, then it must be converted to Julian day.
This can be done using a simple form given by van Flandern and Pulkkinen (1979). The
application of this formula requires that division by an integer yield an integer, and it is
thus somewhat ambiguous. Fernie (1983) gave a simple computer program (in Basic)
for the same simplified formula. The function denoted “floor” implies truncation of the
subject to an integer. The Julian day (on UTC timescale) as an integer is given by

d, =367y - floor{7[y +floor{(m +9)/12}] /4}

(B1)
+floor{275m/9} + d +1721014
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with the fractional part given by

h m s
d,=——+ +
724 1440 86400

(B2)

In order to calculate the geolocation, the time in Julian centuries in TT time and Julian
days since J2000 in UTC time are required. These are calculated using the Julian day
on the TT and UTC timescales. SSM/I and SSMIS measure time as TAIl seconds since
1987 January 1% 00z (xtime). This is easily converted to Julian days on the TT
timescale using

JD,, =2446796.5+ (xtime + 32.184)/86400 (B3)

where 2446796.5 is the Julian Day for 1987 January 1% 00z. Julian Day on the UTC
scale is then calculated as

ID,rc =JD,,, + AUT/864OO (B4)
where AUT is the number of leap seconds.

Appendix C: Calculations required for geolocation

The following describes the basis for the calculation of pixel geolocation, satellite zenith
and azimuth angles and solar beta angle, zenith and azimuth angles. The
transformation from GCI to geodetic nadir is often found using an iterative technique,
however, the approach described here is based on that suggested by Patt and Gregg
(1994) who give a closed form solution based on some minor assumptions, the
accuracy of which are discussed in the text.

C1. Calculation of latitude and longitude from a pixel location
vector

Figure 3 shows the (currently unknown) geocentric pixel location vector G that can be
used to calculate pixel geodetic latitude and longitude. The geodetic longitude ¢, in
inertial coordinates is equal to the geocentric longitude ¢, that is simply

¢, =¢, =tan” (i) (c1)
G

X

where Gy and G, are the x and y components of G. Note that (C1) must be rotated to
Earth-fixed coordinates. The geocentric latitude 6. is
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G

4

tanH =
¢ 2 2 (C2)
4G, +G,

The geodetic latitude 6, can be obtained from the geocentric latitude 6. using

tan 6 G
tan0, = < = :

(1-7) (1-5)JGi+G; “

where fis the Earth flattening factor (Bate et al. 1971; P 94).

C2. Calculation of z-axis component of the nadir to GCI
rotation matrix

The nadir to GCI rotation matrix N rotates a vector from geodetic nadir coordinates to
GCI coordinates. The z-axis component of this rotation matrix does not have a closed
form solution so that iterative solutions have been used in the past. Patt and Gregg
(1994) suggested an approximation that produces a very high accuracy and was used
for the NASA SeaWiFS and TRMM missions. They state that the accuracy at altitude
705 km is 0.3 arcseconds.

b)

----------------

Figure C-1. Diagram showing (a) nadir vector D, pixel location vector G
along with some other relevant quantities and angles used to find the z-
axis component of the nadir-to-GCl rotation matrix, and (b) the ellipsoid
spheroid Earth with flattening factor f and the ellipsoid with flattening
factor f, which denotes the approximate orbit of the satellite.

First, the nadir vector along the z-axis is calculated. Figure C1 shows the nadir vector
in the x-z plane. The point of interest is the point nearest the spacecraft where the
ellipsoid is normal to the vector D. From C2, it can be seen that
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Dz = tan Qde (c4)
Since this is in the x-z plane, (C3) becomes

G

(1 - f)sz

The position vector P is shown in Figure 3 as the difference between G and Z, so that

G.D, _Gz[Gx(l-f)Q-Dx]
G (-1  GO-f)

Now, a second ellipsoid can be defined at the spacecraft that is also normal to the
zenith vector G, as shown in fig. C1b. The flattening factor of the Earth ellipsoid is =(a-
c)/a, whereas the flattening factor of this second ellipsoid is f,=(ap-cp)/ap, which is
different from f. Analogous to (C5)

P G

Z Z

(-1 e (-5)6, i

Noting from fig C1a that P,= Gx.-Dx, and using (C6), (C7) becomes

P=G -D =G, - (c6)

G|G.(1-r) -D,] G

G(1- £ (1-£,) (6, -p,) (1-f)G, c8)

that cancels out to give

4

G (1-f) -D,
G -D ()

(l_fp)2=

A simplification can be made by assuming that Py, Gx and D, have the same relative
magnitudes as |P|, |G| and |D|.

> _[6l(1- /)" -

(1 B fP) B G|-|D| (C10)
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This now gives a method for determining f,, but G is still unknown. A good
approximation can be made by assuming |G| is the mean Earth radius R,. This can be
further simplified by noting that, in this case, |D|=|G|-|P| so that (C10) becomes

2
m
Patt and Gregg (1994) note that an iterative procedure can be used to improve the

accuracy is necessary, by calculating f, and recalculating (C9).

Figure C3 shows a diagram of the vectors P, G and N and gives a schematic for how to
obtain N,. Starting with N

-N

tanf, = —————
2 2 (C12)

N, +N,
and P

P

tan0_ = = z — (13)
X + y
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Figure C-2. Diagram showing angles and ellipsoids. The light green
ellipsoid represents Earth and has flattening factor f, whereas the yellow
ellipsoid has flattening factor f,.

Following the form of (C3) but for the yellow ellipse in fig C3 gives

tan6O P
tan0, = = -

(1-7,) ) (1-1,) P2+ P

and substituting (C12) gives
-N P

Z Z

INTENT (1_];)21/133+Py2

If N is a unit vector, then

N;+N;=1-N:;

Z

so that (C15) becomes

(C14)

(C15)

(C16)
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, P’ - P’N? P’-P>N? P* P°N:
NZ: 144'2 2=Z Z P
(1-1,) (P2 +P?) a a o«
that gives
PZ
N, =

4
\/(1 ~f,) (P2 +P2)+P?
In a similar way, (C16) can be used to eliminate N, from (C15)
2 2 2
T (1-1,)P2+P,

. (Pre(i-1) (P2 +P?)

Since geodetic and geocentric longitudes are equal, then

N}C Px
tang = — = —
Ny Py

which can be used to eliminate N, and Ny respectively from (C18) to get

P(1- fp)2
N, = -
\/p; w(i-5,) (P2 +P?)
and
v - P(1- Cp)
\/p; w(i-1,) (P2 +P?)

C3. Calculation of Greenwich Hour Angle

The first step for calculation of the Greenwich Hour Angle (GHA) is to obtain the
correctly formatted time. The Julian Date must be found on both TT and UTC

(C17)

(C18)

(C19)

(C20)

(C21)

timescales (see Appendix B). Once these are known, the Julian Day since the J2000

epoch in UT1 time can be defined as
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D, =D, +24515450 (C24)

where JDyrc is the Julian day (including fractional part) on the UTC timescale. In
addition to the definition of time in (C24), the number of Julian centuries (of length
36525 days) since J2000 in terrestrial time is required. This can be found as

T = (JD,, +2451545.0) /36525 (c25)

In order to calculate the GHA, several quantities must first be calculated (Astronomical
Almanac, 2010; page B11). The Greenwich Mean Sidereal Time (GMST) is calculated
as (Astronomical Almanac, 2010; page B8)

GMST(D,.T) = 360{86400 x[0.7790572732640 +0.00273781191135448D, +mod(D, .1)|

(C26)
+0.00096707 +(307.47710227 x T) +(0.092772113 x T°?)
-(0.0000000293 x 7°) - (0.00000199707 x T*) - (2453 x 10~ TS)} /86400
which has units of seconds.
Next, the Equation of the Equinoxes must be found using the equation given in the
Astronomical Almanac (2010; page B10) but by
E,(T) = Aycos(e) (c27)

where Ay is the total nutation in longitude and ¢ is the mean obliquity of the ecliptic. The
latter is given by Seidelmann (2006; Eq. 3.222-1) as

E=¢,+A¢e (C28)
where Acg is the nutation in obliquity and &y is given by

e, =84381.448-(46.8150 x T) -

(0.00059 x 7%) +(0.001813 x T°) (C29)

which is in units of arcseconds.

Seidelmann (2006) gave details of how to calculate the nutation terms (Ay and Ag)
based on the International Astronomical Union (IAU) 2000B standard that is a simplified
version of the original IAU 2000 standard. The original standard has over 1000 terms,
whereas the simplified version uses the largest 78 terms (McCarthy and Luzum, 2003).
This reduced set still greatly exceeds the required accuracy for our purpose, so several
assumptions were made to simplify the calculation. The coefficients given by
Seidelmann (2006) are used here, but only terms with coefficients exceeding one
arcsecond are kept. Additionally, only the main term for each coefficient is considered
with the smaller time term neglected. The nutation in obliquity Ae is now given b
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Ae =9.2025sin(Q,,) + 0.5736sin(2F, -2D, +2Q, ) (c30)
and the nutation in longitude Ay is given by

Atp =[-17.19965in(Q,,) +0.20625in(2Q,,) -13187sin(2F,, - 2D, +29,)
(C31)
+0.1426sin(1, ) -0.2274sin(2F +2Q, )] /3600

which has units of degrees and where Q,, is the longitude of the mean ascending node
of the lunar orbit

Q, =[450160.28 - (6962890.539T) +(7.4557°) +(0.0087*) ] /3600 (c32)
Fm is the mean longitude of the Moon minus mean longitude of the Moon's node
F, = [335778.877 +(1739527263.137T) - (13.2577%) +(0.01 1T3)] /3600 (C33)
Dp, is the mean longitude of the Moon minus mean longitude of the Sun
D, = [1072261 307 +(1602961601.3287) - (6.8917°) +(0.019T3)] /3600 (C34)
and I, is the mean longitude of the Moon minus mean longitude of the Moon's perigee
1, =[1287099.804 +(129596581.224T) - (0.5777°) - (0.0127%)] /3600 (c35)

(C32)-(C35) are taken from Seidelmann (2006; eq 3.222-6) and have units of degrees.

Greenwich Hour Angle is then given by

GHA(D,,T)=GMST(D,,T)+E,(T) (c36)

C4. Calculation of Sun position vector

The following Sun model is based on the model of van Flandern and Pulkkinen (1979).
The Sun position vector in GCI coordinates is given by

cosl,
S.=d,| sinl, cose (C37)

sinl/ sine
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where I, is the apparent solar longitude in the ecliptic and ¢ is the true obliquity of the
ecliptic as defined in (C28). The Earth to Sun distance rs in astronomical units (au) is
calculated from van Flandern and Pulkkinen (1979; Table 4, RP) as

r,=1.00014-0.01675cos g, -0.00014 cos(2g, ) (C38)
where gs is the Sun mean anomaly in degrees

g, =360 x[0.993126 +0.00273777850D, | (c39)

The Earth to Sun distance ds in km is therefore
d. =149597870.660r, (C40)

The apparent solar longitude in the ecliptic /s; can be calculated as

k
lsa = lS+Als+A'L/1—_ (c41)
T

N

where /s is the mean solar longitude, Als is the geometric correction to the mean solar
longitude, Ay is the nutation in longitude and k is constant of aberration where
k=0.0056932. The mean solar longitude /s is given by

[, =360 x [0.779072 +0.00273790931D), | (c42)

The geometric correction to the mean solar longitude Als is a combination of several
factors: the mean longitude of the Moon

[, =360 x [0.606434 +0.036601 10129DU] (C43)
the mean anomaly for the Sun

g, =360 x[0.993126 +0.00273777850D, | (ca4)
the mean anomaly for Venus

g, =360 x [0.140023 +0.OO445036173DU] (C45)
the mean anomaly for Mars

g, =360 x[0.053856 +0.00145561327D, | (c46)

and the mean anomaly for Jupiter
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g5 =360 x [0.056531+0.00023080893D, | (ca7)

Finally, the geometric correction to the mean solar longitude Al is calculated from van
Flandern and Pulkkinen (1979; Table 4, PLON) as

Al =[6910sing, +72sin(2g,)-17Tsing, - 7cos(g, - ;)
+6sin(l, - 1) +5sin(4g, -8g, +3g;)- 5cos(2g, - 2g,)
- 4sin(g, - g,) +4cos(4g, - 8g, +3g;) +3sin(2g, - 2g,) (Cag)

3sing, - 3sin(2g, - 2¢,)] /3600
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