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1. Introduction 
The following document was prepared for the CSU NOAA/NCDC SSMI/SSMIS Satellite 
Data Stewardship project and describes how to obtain geolocation information for a 
conically scanning sensor such as SSM/I or SSMIS.  It is assumed that the following are 
known for each pixel: 

1. Spacecraft position vector 
2. Spacecraft velocity vector 
3. Time 
4. Spacecraft attitude and sensor mount angles 

 
In the case of the SSMI/SSMIS Satellite Data Stewardship project, the spacecraft 
position/velocity vectors were calculated for the first and last pixels for each scan using 
the NORAD Two Line Elements (TLEs) with the SGP4 code and these values were 
added to the Basefiles.  The spacecraft position and velocity vectors were linearly 
interpolated across the scan to obtain values at each scan position.  The adequacy of 
the interpolation technique was tested by calculating values from the SGP4 code for the 
center of the scan and comparing with the interpolated value.  This test showed errors 
of a few centimeters, which is more than adequate for the purpose of geolocation for 
SSMI/SSMIS.  Spacecraft attitude was estimated from a coastline analysis, with slightly 
different sensor mount angles being used for each feedhorn of SSMIS. 

The following describes in detail the calculation of: 

1. Pixel geodetic longitude and latitude 
2. Satellite zenith angle (Earth Incidence Angle) and satellite azimuth angle 
3. Solar beta angle, sun glint angle, solar zenith and azimuth angles and the time 

since eclipse 
4. Spacecraft ephemeris (spacecraft longitude, latitude and altitude) 

 
Some of the more detailed working and explanation can be found in the appendices. 

2. Calculation of Pixel Geodetic Latitude and 
Longitude 

The process for calculating the pixel latitude and longitude starts with the calculation of 
the Instantaneous Field-Of-View (IFOV) matrix in sensor coordinates.  Several rotations 
are required to obtain the IFOV in Geocentric Inertial (GCI) coordinates.  First there is 
the sensor-to-spacecraft rotation that obtains the IFOV relative to the spacecraft.  Next 
there is the spacecraft-to-orbital (geodetic nadir pointing) rotation that obtains the IFOV 
relative to the path of the spacecraft.  Finally, there is the orbital-to-GCI rotation that 
obtains the IFOV in GCI coordinates.  With the IFOV in GCI coordinates, the 
intersection of the IFOV with the oblate spheroid Earth is calculated and this is then 
used to get geocentric, then geodetic latitude and longitude. 
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2.1 Specification of the IFOV 
The Instantaneous Field-of-View (IFOV) vector D is calculated in coordinates relative to 
the sensor.  Several aspects of the instruments design must be known in order to 
construct the IFOV including the number of pixels per scan, the scan start angle, the 
angle between each scan position and the direction of pointing relative to the satellite 
(forward or backward). 

	
  

Figure 1. Simple scan geometry for IFOV in sensor coordinates. 

Figure 1 shows the scan geometry for a conically scanning instrument.  The IFOV 
vector in sensor coordinates Ds is calculated as  

Ds =
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where θe is the nominal elevation angle (half cone angle), ϕa is the scan angle, ), ϕa is 
the and Δa are additive offsets to the nominal elevation and scan angles.  The scan 
angle is calculated from 
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where ϕ0 is the scan start angle, ka is the scan number (ranges from one to the number 
of scans) and Δscan is the angle between scan positions.  
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2.2 Calculation of the spacecraft attitude matrix A 
The spacecraft attitude rotation matrix A gives the mapping to go from spacecraft 
coordinates to nadir pointing coordinates.  The spacecraft attitude rotation matrix is 
calculated using an Euler rotation based on some known (or estimated) attitude offset 
angles in the directions of pitch, roll or yaw, denoted respectively by θp, θr and θy.  For 
convention, a positive pitch is in the “nose-up” direction, positive roll is in the “bank-left” 
direction and positive yaw is to the right, with the z-axis pointed towards the Earth as 
shown in Figure 2.  Each of these offsets represents a different rotation matrix denoted 
as Ap, Ar and Ay respectively and give by 
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These three matrix rotations are combined to form A.  Since rotations in three 
dimensions do not commute, the rotation sequence must be specified by the user with 
the first rotation (preferably) being the largest.  For instance, if the yaw is the largest 
correction, then a 3-2-1 rotation order would be employed.  Assuming a 3-2-1 rotation 
order, the spacecraft attitude rotation matrix A is given by 
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A =A pA rA y .	
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Figure 2. Directions of positive pitch, roll and yaw. 

2.3 Calculation of the sensor alignment matrix S 
The sensor alignment rotation matrix S gives the mapping to go from sensor 
coordinates to spacecraft coordinates.  The sensor alignment rotation matrix is 
calculated using an Euler rotation based on some known (or estimated) sensor 
alignment angles in the directions of pitch, roll or yaw.  These offsets are relative to the 
sensor and correspond directly to the pitch, roll and yaw directions if the attitude of the 
spacecraft is perfectly aligned (ie: spacecraft pitch, roll and yaw adjustments are all 
zero). 

The sensor alignment rotation matrix S is calculated in exactly the same way as the 
spacecraft attitude rotation matrix, but with the sensor offsets rather than the attitude 
offsets.  Additionally, the spacecraft attitude rotation matrix does not change by channel, 
but the sensor alignment rotation matrix can change based on separate feedhorn 
alignment (such as with SSMIS).  The sensor alignment rotation matrix must therefore 
be calculated for each feedhorn. 

2.4 Interpolation of the spacecraft position and velocity 
vectors 

The basefiles contain the spacecraft position and velocity vectors for the start and end 
of the active scan.  These values are then linearly interpolated to each pixel position 
across the scan.  Each dimension is interpolated separately.  Interpolation weights are 
calculated using time.  

2.5 Calculation of the nadir to GCI rotation matrix N 
The nadir-to-GCI rotation matrix M gives the mapping to go from nadir pointing 
coordinates to geocentric inertial (GCI) coordinates.  Section C2 gives the details of how 
to obtain the z-axis of the nadir-to-GCI rotation matrix, which does not have a closed 
form solution.  The calculations used here follow those from Patt and Gregg (1994) that 
have accuracy of around 0.3 arcseconds for a 700km orbit. 
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The components of the nadir vector Mz come from (C17), (C20) and (C21) 

	
  

€ 

Mz =

−Px # f Pz
2 + # f 2 Px

2 + Py
2( )

−Py # f Pz
2 + # f 2 Px

2 + Py
2( )

−Pz Pz
2 + # f 2 Px

2 + Py
2( )

$ 

% 

& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 

	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (5)	
  

where  

€ 

" f = 1− f p( )
2

=
Rm 1− f( )2 + P − Rm

P 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (6)	
  

	
  

such that Px, Py and Pz are the components of the spacecraft position vector, f is the 
flattening factor for the Earth ellipse, fp is the flattening factor for the ellipse described in 
section C2, Rm is the mean Earth radius (Rm≈6371) and |P| is the magnitude of the 
vector P. 

The y-axis component of M is estimated using the spacecraft velocity vector V.  The 
vector T is defined as normal to the orbit plane (the z-x plane) such that  
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The y-axis component of M is then given by 
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where Tx, Ty and Tz are the components of the vector T. 

Finally, the x-axis component of M is estimated from the z and y-axis components 

Mx =My ×Mz 	
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The nadir-to-GCI rotation matrix is then constructed by combining these 
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M = Mx My Mz[ ] 	
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2.6 Calculation of the IFOV vector in GCI coordinates 
The sensor alignment, spacecraft attitude and nadir to GCI rotation matrices are used to 
convert the IFOV in sensor coordinates Ds to the IFOV in GCI coordinates.  The sensor 
alignment rotation matrix can be used to convert a vector from spacecraft to sensor 
coordinates, so the transpose of this matrix is required to go from sensor to spacecraft 
coordinates.  In a similar way, the spacecraft attitude rotation matrix can be used to 
convert a vector from nadir to spacecraft coordinates, so the transpose of this matrix is 
required to go from spacecraft to nadir coordinates.  Finally, the nadir to GCI rotation 
matrix can be used to convert from nadir to GCI coordinates.  The IFOV in GCI 
coordinates Di is therefore obtained by pre-multiplying Ds by the three rotation matrices 
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Di =MATSTDs	
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2.7 Intersection with Oblate Earth 
Next, the intersection of the IFOV in GCI coordinates Di with the Earth is calculated to 
find the target position vector G in GCI coordinates (see Figure 3) and the distance 
between the satellite and the ground target d. 

The vector for the target position can be found directly from the spacecraft position 
vector P and the IFOV vector Di (both already in GCI coordinates) 
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The equation for an ellipsoid in standard Cartesian coordinates is 
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For an oblate spheriod Earth a=b=RE which is the equatorial radius of the Earth and 
c=RP which is the polar radius of the Earth.  Using the definition of the Earth flattening 
factor RP =(1-f)RE, substituting these into the above equation and rearranging gives 
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A quadratic equation is found by substituting the components of G into (14), expanding 
out all brackets and rearranging in terms of d 
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(15) can be solved using the factorization of ad2+bd+c=0 that is given by 

d = −b± b2 − 4ac
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If there are two real solutions for d, the smaller one is the required value of d.  If there is 
only one solution, the line of sight is tangent to the ellipsoid.  If there is no real solution, 
the line of sight is missing the ellipsoid. 

	
  

Figure 3. Diagram showing the spacecraft position vector P, the IFOV 
vector Di and the target position vector G. 
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2.8 Calculation of Greenwich Hour Angle 
The Greenwich Hour Angle (GHA) serves to rotate the inertial coordinates to an Earth-
fixed coordinate system.  The geodetic longitude as calculated in the inertial frame (GCI 
coordinates) would coincide with the vernal equinox, so the GHA is required to adjust 
the geodetic longitude to the current orientation of the Earth.  The details of the 
calculation of the GHA are given in section C3.  

2.9 Calculation of geodetic latitude and longitude 
The calculation of the geodetic latitude and longitude is given in section A1.  The 
geodetic latitude is given by (C3) as 
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It is recommended that the atan2 function be used to calculate the arctan so as to 
ensure the answer is in the correct quadrant.  The longitude in inertial coordinates is 
given by (C1) as 
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although this must be adjusted to Earth fixed coordinates.  This adjustment is achieved 
using the following 

φ = tan−1
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where ϕ is the geodetic longitude of the pixel in Earth fixed coordinates and  GHA is the 
Greenwich hour angle for the current pixel time. 

2.10 Calculation of satellite zenith and azimuth 
In order to calculate the satellite zenith (aka Earth Incidence Angle) and azimuth angles, 
it is necessary to first determine the local zenith (up), north and east vectors (Figure 4a).  
The satellite zenith angle is the angle between the local up vector and the pointing 
vector and the azimuth angle is the angle between the projection of the pointing vector 
on the surface and the local north vector (fig. 4b) where positive azimuth angle is 
clockwise when viewed from above. 
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The local up vector represents the vector normal to the Earth’s surface at a given point.  
It is analogous to the nadir Mz, which was calculated as part of the nadir-to-GCI rotation 
matrix, but with M replaced by Lu and P replaced by G 
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where f’ is now simply 

!f = 1− f( )2 	
   	
  	
  (21)	
  

The local east vector is normal to both the local up vector and the z-axis.  It can 
therefore be found as  
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LE =
Z × LU
Z × LU
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The local north can then be found as 
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LN = LU × LE 	
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Figure 4.  Diagram showing (a) the local zenith (up), east and west 
vectors on Earth’s surface relative to the GCI frame and (b) the zenith 

and azimuth angles relative to the pointing vector D. 

The zenith and azimuth angles can now be calculated using the local vectors and a 
vector from the pixel to the satellite, which is the negative of the pointing vector (fig. 4) 
Dn=-D.  The components of this vector can be found as the dot product (ie: the scalar 
projection) of Dn on the local up, north and east vectors 
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dU =Dn • LU
dN =Dn • LN

dE =Dn • LE
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Following the diagram in fig 4b, the zenith and azimuth angles can be expressed as 
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θ = tan−1
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and 
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φ = tan−1 dE dN( ) 	
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In both cases, the atan2 function should be used for calculation so as to ensure that the 
answer is in the right quadrant. 
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3. Calculation of Solar angles 
3.1 Computation of the Sun vector 
The computation of the Sun vector in GCI coordinates is given in section C4. 

3.2 Solar Beta Angle 
The solar beta angle is the angle of elevation of the Sun in the orbit plane as shown in 
Figure 5.  

	
  

Figure 5.  Diagram of angles associated with the solar beta angle. 

To calculate the solar beta angle, first calculate the unit orbit normal in GCI coordinates 
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B =
P × V
P × V 	
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Next, calculate the projection of the unit orbit normal on the Sun vector 
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b = B • " S 	
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where S’ is the normalized Sun vector in GCI coordinates.  Finally, the solar beta angle 
is found as 
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βs = 90 − cos−1b 	
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3.3 Solar zenith and azimuth 
The solar zenith and azimuth are calculated in the same way as the satellite zenith and 
azimuth but with the pointing vector Di replaced by the Sun vector. 

3.4 Sun Glint angle 
The Sun glint angle at any pixel location on the Earth is the angle between the satellite 
direction and the surface reflected Sunlight direction. 

	
  

	
  

Figure 6.  Angles required to obtain the Sun glint angle.  

In order to obtain the Sun glint angle several other angles must first be known in a 
common coordinate system (GCI in this case) including the Sun vector Sun (section 
3.1), the pixel location vector G (12), the pointing vector Di (11) and the local vertical 
vector LU (20).  Figure 6 shows some of the angles required to get the Sun glint angle.  
All of the vectors must be unit vectors, which is denoted by a dash. 

First, the projection of the local vertical unit vector onto the pointing unit vector is 
calculated as 
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Conceptually, this used to construct a right angle triangle as shown in fig 6b.  The 
reflected pointing vector is then  
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After normalizing the reflected pointing vector, the Sun glint angle θg is found (as shown 
in fig 6c) from the Sun vector at the pixel location (pixSun=Sun-G) as 
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θg = pixSun • rDi
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3.5 Time since eclipse 
The time since eclipse is useful for assessing solar heating issues with a sensor where 
information on how long a spacecraft has been in direct sunlight or shadow can be used 
to derive corrections. 

The first step is to calculate the GCI-to-Orbital rotation matrix O.  The orbital coordinate 
system is explained in section B3 and is geocentric nadir pointing.  The z-axis is aligned 
with the spacecraft position vector P 
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The y-axis is normal to the z-axis and the velocity vector V 
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Oy =
Oz × V
Oz × V
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The x-axis is then simply 
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Ox =Oy ×Oz 	
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Finally, the GCI-to-Orbital rotation matrix is 
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O = Ox Oy Oz[ ] 	
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Figure 7. Diagrams of (a) alternate method for obtaining solar beta angle 
and (b) method for obtaining phase of orbit midnight. 

The solar beta angle can be calculated using an alternate method to that shown in 
section 3.2.  This method is more consistent with the calculations in this section, but 
requires the GCI-to-Orbital rotation matrix.  The Sun vector in GCI coordinates Sun is 
used to calculate the Sun to spacecraft vector as 

scSuni = Sun−P 	
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This is then rotated to the orbital frame using the GCI-to-Orbital rotation matrix as 
shown in Figure 7a.  The solar beta angle β can be calculated as 
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β = -sin-1 scSuny( ) 	
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Next, the phase since orbit midnight (the point at which the Sun, Earth and Satellite are 
aligned along a straight line) which is the phase of the Sun in the orbital plane as shown 
in Figure 7b 
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φm = tan
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Figure 8.  Diagrams showing angles used to calculate (a) Earth angular 
radius and (b) orbit phase for eclipse entry/exit. 

Figure 8a shows a diagram of the Earth angular radius ρ as seen from the spacecraft.  
This model assumes a spherical Earth with Earth radius R that must be known at the 
current point.  Wertz (1978; Eq. 4.14) gave a simple expression for the Earth radius at a 
given geodetic latitude θd (the spacecraft latitude in this case) 
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R = RE 1− f sin2θd( ) 	
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The Earth angular radius ρ as seen from the spacecraft is then a function of the Earth 
Radius and the spacecraft altitude h 
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ρ = sin−1 R
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Next, the orbit phase for eclipse entry/exit is calculated as shown in fig 8b.  This is 
essentially the difference between the Earth angular radius and the solar beta angle and 
gives a measure of the angular distance between eclipse entry/exit based on orbit 
midnight.  The orbit phase for eclipse entry/exit is 
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φe = cos−1
cosρ
cosβ
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Next, the angular orbit rate is calculated.  The angular orbit rate requires is calculated 
from the velocity vector perpendicular to the position vector, which is slightly different to 
the velocity vector.  The velocity vector therefore undergoes a correction outlined in 
Figure 9 so as to obtain the correct orbit rate.  First, the position and velocity vectors are 
unitized.  Second, the angular separation between these two vectors is calculated as 
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θ = cos−1 $ P • $ V ( ) 	
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Third, the magnitude of the velocity perpendicular to the position vector is found as 
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Vp = V sinθ 	
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Finally, the orbit rate is given by 
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ω sc =
Vp
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Figure 9.  Diagrams showing the process used to correct the velocity 
vector and calculate the orbit rate. 

The angle since eclipse entry can then be estimated as the phase from orbit midnight 
(i.e. how far is the spacecraft from the mid-point of Earth shadow) plus the phase of 
eclipse exit (i.e. how long since orbit midnight).  If this angle is negative, then it should 
have 360° added to it.  The time since eclipse entry is therefore 
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tE =
φm + φe
ω sc

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (46)	
  

	
  

	
  



CDR Program                                                                           FCDR (SSM/I and SSMIS) Technical Report 
	
  

Page 20 
 
 

4. Calculation of spacecraft ephemeris 
The spacecraft ephemeris for SSM/I consists of spacecraft latitude, longitude and 
altitude at each scan time.  These are calculated using the same technique as was used 
to calculate the pixel position, but with a simplified pointing vector. 

The spacecraft latitude and longitude are defined at the point on Earth closest to the 
satellite, which is found by considering a vector normal to the surface that extends to 
the satellite.  The pointing vector in sensor coordinates is thus 

DS = 0 0 1!
"

#
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  (47)	
  

The nadir to GCI rotation matrix is required to rotate Ds to GCI coordinates.  This is 
calculated using the technique in section 2.5 with the position and velocity vectors for 
the scan time.  The pointing vector in GCI coordinates is then found as 

Di =MDS 	
  	
   	
  	
  	
  	
  (48)	
  

The intersection with the oblate spheroid is done using the technique in section 2.7 and 
the distance between the satellite and the ground point given in (16) is the satellite 
altitude. 

The Greenwich Hour Angle is calculated as in section 2.8 and is used to calculate the 
spacecraft latitude and longitude using the same method outlined in section 2.9 

	
  

Appendix A: Constants and satellite values 
A1. Constants used in calculations 

Earth equatorial radius: RE = 6378.137 km 

Earth polar radius: RP = 6356.755 km 

Earth mean radius: RM = 6371 km 

Earth flattening factor: f = 1/298.257 (dimensionless) 

Earth rotation rate: ωE = 360/86400 = 7.29211585494×10-5 s-1 

Table A-1: Earth Constants 
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A2. Standard SSM/I parameters 

Number of pixels per scan: 128 high-res; 64 low-res 

Angle between scans: 0.8° 

Time between scans: 1.899 s high-res; 3.798 s low res 

Scan cone angular radius: 45° 

Start scan angle: -51.0° 

Total rotation spanned for scan: 102.4° 

Active scan duration: 1.899*0.8*127/360 = 0.5359 s 

Sampling frequency: 4.22 ms 

Table A-2: SSM/I Scan Parameters 

Note: SSM/I was generally mounted so that it viewed behind with the exception of F8, 
which viewed forward. 

A3. Standard SSMIS parameters 

Number of pixels per scan: 180 high-res; 90 low-res 

Angle between scans: 0.8° 

Time between scans: 1.899 s high-res; 3.798 s low res 

Scan cone angular radius: 45° 
Start scan angle:   
Total rotation spanned for scan: 143.2° 

Active scan duration: 1.899*0.8*179/360 = 0.7554 s 

Sampling frequency: 4.22 ms 
Time bias for first pixel:   

Table A-3: SSMIS Scan Parameters 
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Appendix B: Reference frames and time scales 
B1. GCI 
Geocentric Inertial (GCI; alternatively known as Earth Centered Inertial or ECI) 
coordinates have their center at the center of the Earth.  The z axis is in line with the 
rotation axis of the Earth.  These are celestial coordinates, so the x-axis is fixed as the 
point where the plane of Earth’s orbit around the Sun crosses the prime meridian, 
known as the vernal equinox.  The y-axis is then normal to the z and x axes.  One issue 
with this coordinate system is that it is not truly inertial because the coordinate system is 
not fixed relative to the position of the stars (this is the phenomenon of the precession of 
the equinoxes).  For this reason, a reference time is needed to define the position of the 
vernal equinox, which is the approach taken here, but this can also be handled by using 
true-of-date coordinates where corrections are made for each time.  This problem must 
be incorporated into Greenwich Hour Angle calculations that are not discussed here. 

	
  

Figure B-1: Diagram of geocentric inertial coordinates 

B2. Geodetic 
The Geodetic coordinate system is the most commonly used system for describing 
positions on the Earth (including latitude and longitude).  They have the same basic 
directions as GCI coordinates, but the center is no longer the Earth’s center.  Rather, 
the center is the point at which a vector normal to the surface intersects the x-y plane. 
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Figure B-2: Diagram of geodetic coordinates 

B3. Orbital (geocentric nadir) 
The z-axis points in the nadir direction, but is centered at the geocentric origin.  The z-
axis is therefore aligned with the position vector.  The x-axis is approximately in the 
direction of travel of the spacecraft and the y-axis is normal to the orbit plane.  

	
  

	
  

Figure B-3: Diagram of orbital coordinates 

B4. Local horizontal 
Local horizontal coordinates have their center at a given point on the Earth’s surface.  
The N-axis points towards the direction of increasing latitude (North) and the E-axis 
points towards the direction of increasing longitude (East).  The z-axis points opposite 
the geodetic nadir direction (ie: outward from Earth and normal to the surface). 
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B5. Time 
Several time definitions are required in order to calculate the geolocation.  In particular, 
the calculation of the Greenwhich Hour Angle (GHA) and the Sun vector are sensitive to 
errors in the input time.  The GHA affects the spacecraft and pixel longitudes and the 
Sun vector affects the sun angles (solar zenith, azimuth, solar beta, Sun glint angle, 
time since eclipse).  It is important to note that relatively small errors in DU can lead to 
large errors; for example: a 10 second error in DU might lead to an error in the longitude 
of around 4km. 

International Atomic Time (TAI; Temps Atomique International): measured as seconds 
since January 1st 1958, with no leap seconds.  The unit of TAI is seconds 
on the geiod. 

Terrestrial Time (TT): idealized form of TAI.  TAI can be estimated as TT=TAI+32.184 
seconds. 

Universal Time 1 (UT1): mean solar time.  UT1 is counted from 0h (midnight) and is 
affected by irregularities in Earth’s rotation rate. 

Coordinated Universal time (UTC): equivalent to UT1 to within 0.9 seconds.  Leap 
seconds are irregularly added to correct UTC to match mean solar time 
(UT1). UTC can be estimated as UTC=TAI+ΔUT where ΔUT is the number 
of leap seconds. 

Julian Day: number of days since 4713 BC January 1 12z (noon).  Julian Days can be 
measured on either the UTC or TT timescales. 

J2000: a commonly used epoch for calculations. J2000 is equivalent to Julian Day 
2451545. 

If the date is known in year, month, day form, then it must be converted to Julian day.  
This can be done using a simple form given by van Flandern and Pulkkinen (1979). The 
application of this formula requires that division by an integer yield an integer, and it is 
thus somewhat ambiguous.  Fernie (1983) gave a simple computer program (in Basic) 
for the same simplified formula.  The function denoted “floor” implies truncation of the 
subject to an integer.  The Julian day (on UTC timescale) as an integer is given by 

€ 

d j = 367y − floor 7 y +floor m +9( ) 12{ }[ ] 4{ }
                                   + floor 275m 9{ } + d +1721014

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (B1)	
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with the fractional part given by 

€ 

df =
h
24

+
m
1440

+
s

86400 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (B2)	
  

In order to calculate the geolocation, the time in Julian centuries in TT time and Julian 
days since J2000 in UTC time are required.  These are calculated using the Julian day 
on the TT and UTC timescales.  SSM/I and SSMIS measure time as TAI seconds since 
1987 January 1st 00z  (xtime).  This is easily converted to Julian days on the TT 
timescale using 

 
JDTT = 2446796.5+ xtime+32.184( ) 86400 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  (B3) 

where 2446796.5 is the Julian Day for 1987 January 1st 00z. Julian Day on the UTC 
scale is then calculated as 

JDUTC = JDTAI +ΔUT 86400 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (B4)	
  

where ΔUT is the number of leap seconds. 

Appendix C: Calculations required for geolocation 
The following describes the basis for the calculation of pixel geolocation, satellite zenith 
and azimuth angles and solar beta angle, zenith and azimuth angles.  The 
transformation from GCI to geodetic nadir is often found using an iterative technique, 
however, the approach described here is based on that suggested by Patt and Gregg 
(1994) who give a closed form solution based on some minor assumptions, the 
accuracy of which are discussed in the text. 

C1. Calculation of latitude and longitude from a pixel location 
vector 

Figure 3 shows the (currently unknown) geocentric pixel location vector G that can be 
used to calculate pixel geodetic latitude and longitude.  The geodetic longitude ϕd in 
inertial coordinates is equal to the geocentric longitude ϕc that is simply 

φd = φc = tan
−1 Gy

Gx

"

#
$

%

&
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  (C1)	
  

where Gx and Gy are the x and y components of G.  Note that (C1) must be rotated to 
Earth-fixed coordinates.  The geocentric latitude θc is 
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tanθc =
Gz

Gx
2 +Gy

2 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C2)	
  

The geodetic latitude θd can be obtained from the geocentric latitude θc using  

€ 

tanθd =
tanθc
1− f( )2

=
Gz

1− f( )2 Gx
2 +Gy

2 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C3)	
  

where f is the Earth flattening factor (Bate et al. 1971; P 94).  

C2. Calculation of z-axis component of the nadir to GCI 
rotation matrix 

The nadir to GCI rotation matrix N rotates a vector from geodetic nadir coordinates to 
GCI coordinates.  The z-axis component of this rotation matrix does not have a closed 
form solution so that iterative solutions have been used in the past.  Patt and Gregg 
(1994) suggested an approximation that produces a very high accuracy and was used 
for the NASA SeaWiFS and TRMM missions.  They state that the accuracy at altitude 
705 km is 0.3 arcseconds. 

	
  

Figure C-1. Diagram showing (a) nadir vector D, pixel location vector G 
along with some other relevant quantities and angles used to find the z-
axis component of the nadir-to-GCI rotation matrix, and (b) the ellipsoid 

spheroid Earth with flattening factor f and the ellipsoid with flattening 
factor fp which denotes the approximate orbit of the satellite. 

First, the nadir vector along the z-axis is calculated.  Figure C1 shows the nadir vector 
in the x-z plane.  The point of interest is the point nearest the spacecraft where the 
ellipsoid is normal to the vector D.  From C2, it can be seen that  
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Dz = tanθdDx 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C4)	
  

Since this is in the x-z plane, (C3) becomes 

€ 

tanθd =
Gz

1− f( )2Gx
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C5)	
  

The position vector P is shown in Figure 3 as the difference between G and Z, so that 

€ 

Pz =Gz −Dz =Gz −
GzDx

Gx 1− f( )2
=
Gz Gx 1− f( )2 −Dx[ ]

Gx 1− f( )2 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C6)	
  

Now, a second ellipsoid can be defined at the spacecraft that is also normal to the 
zenith vector G, as shown in fig. C1b.  The flattening factor of the Earth ellipsoid is f=(a-
c)/a, whereas the flattening factor of this second ellipsoid is fp=(ap-cp)/ap, which is 
different from f.  Analogous to (C5) 
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Pz
1− f p( )

2
Px

=
Gz

1− f( )2Gx
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Noting from fig C1a that Px= Gx--Dx, and using (C6), (C7) becomes 
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Gz Gx 1− f( )2 −Dx[ ]
Gx 1− f( )2 1− f p( )

2
Gx −Dx( )

=
Gz

1− f( )2Gx
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C8)	
  

that cancels out to give 
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1− f p( )
2

=
Gx 1− f( )2 −Dx

Gx −Dx
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C9)	
  

A simplification can be made by assuming that Px, Gx and Dx have the same relative 
magnitudes as |P|, |G| and |D|. 
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1− f p( )
2

=
G 1− f( )2 − D
G − D 	
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This now gives a method for determining fp, but G is still unknown.  A good 
approximation can be made by assuming |G| is the mean Earth radius Rm.  This can be 
further simplified by noting that, in this case, |D|=|G|-|P| so that (C10) becomes 

€ 

1− f p( )
2

=
Rm 1− f( )2 + P − Rm

P 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C11)	
  

Patt and Gregg (1994) note that an iterative procedure can be used to improve the 
accuracy is necessary, by calculating fp and recalculating (C9). 

Figure C3 shows a diagram of the vectors P, G and N and gives a schematic for how to 
obtain Nz.  Starting with N 
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tanθd =
−Nz
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and P 
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Figure C-2. Diagram showing angles and ellipsoids.  The light green 
ellipsoid represents Earth and has flattening factor f, whereas the yellow 

ellipsoid has flattening factor fp. 

	
  

Following the form of (C3) but for the yellow ellipse in fig C3 gives 
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tanθd =
tanθ c

1− f p( )
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1− f p( )

2
Px
2 + Py

2 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C14)	
  

and substituting (C12) gives 
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=
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If N is a unit vector, then 
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Nx
2 + Ny

2 =1− Nz
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so that (C15) becomes 



CDR Program                                                                           FCDR (SSM/I and SSMIS) Technical Report 
	
  

Page 30 
 
 

€ 

Nz
2 =

P
z

2 − P
z

2Nz
2

1− f p( )
4
Px
2 + Py

2( )
=
P

z

2 − P
z

2Nz
2

α
=
P

z

2

α
−
P

z

2Nz
2

α 	
  

that gives 
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In a similar way, (C16) can be used to eliminate Nz from (C15) 
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Since geodetic and geocentric longitudes are equal, then 
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tanφ =
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  (C19)	
  

which can be used to eliminate Ny and Nx respectively from (C18) to get 

€ 

Nx =
Px 1− f p( )

2

Pz
2 + 1− f p( )

4
Px
2 + Py

2( )
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C20)	
  

and 
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C3. Calculation of Greenwich Hour Angle 
The first step for calculation of the Greenwich Hour Angle (GHA) is to obtain the 
correctly formatted time.  The Julian Date must be found on both TT and UTC 
timescales (see Appendix B).   Once these are known, the Julian Day since the J2000 
epoch in UT1 time can be defined as 
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DU = JDUTC + 2451545.0 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C24)	
  

where JDUTC is the Julian day (including fractional part) on the UTC timescale.  In 
addition to the definition of time in (C24), the number of Julian centuries (of length 
36525 days) since J2000 in terrestrial time is required.  This can be found as  

T = JDTT + 2451545.0( ) 36525 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C25)	
  

In order to calculate the GHA, several quantities must first be calculated (Astronomical 
Almanac, 2010; page B11).  The Greenwich Mean Sidereal Time (GMST) is calculated 
as (Astronomical Almanac, 2010; page B8) 
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GMST DU ,T( ) = 360 86400 × 0.7790572732640 +0.00273781191135448DU +mod DU ,1( )[ ]{
                          +0.00096707 + 307.47710227 × T( ) + 0.092772113 × T 2( )
                          - 0.0000000293 × T 3( ) - 0.00000199707 × T 4( ) - 2.453 ×10−9 × T 5( )} 86400
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which has units of seconds. 

Next, the Equation of the Equinoxes must be found using the equation given in the 
Astronomical Almanac (2010; page B10) but by  
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Ee T( ) = Δψ cos ε( ) 	
   	
  	
  	
  	
  	
  	
  	
  	
  (C27)	
  

where Δψ is the total nutation in longitude and ε is the mean obliquity of the ecliptic. The 
latter is given by Seidelmann (2006; Eq. 3.222-1) as 
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ε = ε 0 + Δε 	
   	
  (C28)	
  

where Δε is the nutation in obliquity and ε0 is given by  

€ 

e0 = 84381.448 - 46.8150 × T( ) -

                       0.00059 × T 2( ) + 0.001813 × T 3( ) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C29)	
  

which is in units of arcseconds.   

Seidelmann (2006) gave details of how to calculate the nutation terms (Δψ and Δε) 
based on the International Astronomical Union (IAU) 2000B standard that is a simplified 
version of the original IAU 2000 standard.  The original standard has over 1000 terms, 
whereas the simplified version uses the largest 78 terms (McCarthy and Luzum, 2003).  
This reduced set still greatly exceeds the required accuracy for our purpose, so several 
assumptions were made to simplify the calculation.  The coefficients given by 
Seidelmann (2006) are used here, but only terms with coefficients exceeding one 
arcsecond are kept.  Additionally, only the main term for each coefficient is considered 
with the smaller time term neglected.  The nutation in obliquity Δε is now given b 
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Δε = 9.2025sin Ωm( ) + 0.5736sin 2Fm − 2Dm + 2Ωm( ) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C30)	
  

and the nutation in longitude Δψ is given by 
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Δψ = -17.1996sin Ωm( ) +0.2062sin 2Ωm( ) -1.3187sin 2Fm − 2Dm + 2Ωm( )[
                                 +0.1426sin lp( ) - 0.2274sin 2F + 2Ωm( )] 3600
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which has units of degrees and where Ωm is the longitude of the mean ascending node 
of the lunar orbit 
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  (C32)	
  
Fm is the mean longitude of the Moon minus mean longitude of the Moon's node 

€ 

Fm = 335778.877 + 1739527263.137T( ) - 13.257T 2( ) + 0.011T 3( )[ ] 3600	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C33)	
  

Dm is the mean longitude of the Moon minus mean longitude of the Sun 

€ 

Dm = 1072261.307 + 1602961601.328T( ) - 6.891T 2( ) + 0.019T 3( )[ ] 3600	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C34)	
  

and lp is the mean longitude of the Moon minus mean longitude of the Moon's perigee 

€ 

lp = 1287099.804 + 129596581.224T( ) - 0.577T 2( ) - 0.012T 3( )[ ] 3600 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C35)	
  

(C32)-(C35) are taken from Seidelmann (2006; eq 3.222-6) and have units of degrees. 

Greenwich Hour Angle is then given by 

GHA DU,T( )=GMST DU,T( )+Ee T( ) 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C36)	
  

C4. Calculation of Sun position vector 
The following Sun model is based on the model of van Flandern and Pulkkinen (1979).  
The Sun position vector in GCI coordinates is given by 

Si = ds

coslsa
sin lsa cosε
sin lsa sinε
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#
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  (C37)	
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where lsa is the apparent solar longitude in the ecliptic and ε is the true obliquity of the 
ecliptic as defined in (C28). The Earth to Sun distance rs in astronomical units (au) is 
calculated from van Flandern and Pulkkinen (1979; Table 4, RP) as  

€ 

rs =1.00014 - 0.01675cosgs - 0.00014cos 2gs( ) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C38)	
  
where gs is the Sun mean anomaly in degrees 

€ 

gs = 360 × 0.993126 +0.00273777850DU[ ] 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C39)	
  
The Earth to Sun distance ds in km is therefore 
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ds =149597870.660rs 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C40)	
  

The apparent solar longitude in the ecliptic lsa can be calculated as 

€ 

lsa = ls + Δls + Δψ −
k
rs
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C41)	
  

where ls is the mean solar longitude, Δls is the geometric correction to the mean solar 
longitude, Δψ is the nutation in longitude and k is constant of aberration where 
k=0.0056932.  The mean solar longitude ls is given by 

€ 

ls = 360 × 0.779072 +0.00273790931DU[ ] 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C42)	
  
The geometric correction to the mean solar longitude Δls is a combination of several 
factors: the mean longitude of the Moon 

€ 

lm = 360 × 0.606434 +0.03660110129DU[ ] 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C43)	
  
the mean anomaly for the Sun 

€ 

gs = 360 × 0.993126 +0.00273777850DU[ ] 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C44)	
  
the mean anomaly for Venus 

€ 

g2 = 360 × 0.140023 +0.00445036173DU[ ] 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C45)	
  
the mean anomaly for Mars 

€ 

g4 = 360 × 0.053856 +0.00145561327DU[ ] 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C46)	
  
and the mean anomaly for Jupiter 
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€ 

g5 = 360 × 0.056531+0.00023080893DU[ ] 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (C47)	
  
Finally, the geometric correction to the mean solar longitude Δls is calculated from van 
Flandern and Pulkkinen (1979; Table 4, PLON) as 

€ 

Δls = 6910sings + 72sin 2gs( ) -17T sings - 7cos gs - g5( )[
       +6sin lm - ls( ) +5sin 4gs - 8g4 + 3g5( ) - 5cos 2gs - 2g2( )
       - 4 sin gs - g2( ) + 4cos 4gs - 8g4 + 3g5( ) + 3sin 2gs - 2g2( )
       -3sing5 - 3sin 2gs - 2g5( )] 3600
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